ФАЦИАЛЬНАЯ ПРИРОДА, ВЕЩЕСТВЕННЫЙ СОСТАВ И ФОРМАЦИОННАЯ ПРИНАДЛЕЖНОСТЬ КАРБОНАТИТОВ ЖЛОБИНСКОГО ПОЛЯ ДИАТРЕМ (БЕЛАРУСЬ)

Веретенников Н.В.*, Владыкин Н.В.**, Лапцевич А.Г.*

*Институт геохимии и геофизики НАН Беларуси, г. Минск, lapts@igig.org.by
** Институт геохимии им. А.П. Виноградова СО РАН, г. Иркутск, vlad@igc.irk.ru

Горные породы, достаточно обоснованно отнесенные к карбонатитам, впервые в Беларуси установлены в пределах Жлобинского поля диатрем [1,2]. Они встречены скважиной №772, пробуренной в 2006 году с целью заверки локальной магнитной аномалии трубочного типа "Шлях селянина". Этой скважиной под толщей алеврито-глинистых пород келловейского яруса средней юры в интервале глубин 136,5 – 251,5м пройдены вулканокластические и массивные магматические породы, не встречавшиеся ранее (в такой ассоциации) как в диатремах Жлобинского поля, в котором к настоящему времени выявлено 24 трубки взрыва, образованных различными щелочно-ультраосновными породами [3], так и среди других магматических образований Беларуси. В указанном интервале вскрыты (сверху-вниз): мелилититовые туфы литокластические, средне-мелкообломочные, с кальцитовым цементом базального типа, которые преобладают в интервале глубин 136,5-206м; беспироксеновые оливиновые мелилититы мелко- и микропорфировой структуры, массивной текстуры, в разной степени измененные и трещиноватые (интервалы глубин \approx 154–170, 179–185, 188–195м); флогопит-кальцитовые карбонатиты. Последние приурочены к нижней части вскрытого разреза (гл. 228-251,5м), где они иногда чередуются с фрагментами вмещающих осадочных пород девона – доломитов, мергелей и др. Кроме того, измененные карбонатиты встречаются и в керне из верхней части разреза среди преобладающих мелилититовых туфов, содержащих в большом количестве ксенолиты различных осадочных пород, которые встречаются и в мелилититах и карбонатитах. Это свидетельствует в пользу того, что скважина №772 в интервале 136,5-251,5м прошла эндоконтактовую зону небольшого, но достаточно сложного объекта вулканомагматической природы. Небольшие размеры локальной магнитной аномалии, ее размещение в пределах компактного Лучинского куста трубок взрыва, набор и структурно-текстурные особенности вскрытых пород позволяют заключить, что этот объект представляет собой эродированную трубку взрыва (видимо, с полностью денудированной кратерной частью), которая интрудирована в ее жерловой части секущими или подводящими дайками мелилититов и телами карбонатитов эруптивной и субвулканической фаций магматизма. Можно предполагать, что карбонатиты частично или полностью выполняют в виде штока или "пробки" жерловую часть этого вулканического образования, а в его верхней части образуют в мелилититовых туфах мелкие "иньекции" в виде апофиз или жил. Следовательно, карбонатиты внедрились на более позднем, видимо, заключительном этапе его формирования. Такое пространственно-временное соотношение щелочно-ультраосновных пород, представленных субвулканическими телами оливиновых мелилититов, их туфами и флогопит-кальцитовыми карбонатитами В ОДНОМ вулканомагматическом соответствует существующим представлениям о хронологической последовательности проявлений щелочного базит-ультрабазитового часто ассоциирующего И карбонатитового магматизма [4,5,6 и др.].

Петрографическая характеристика мелилититов и их туфов, вскрытых скв. №772, приведена в [1,2]. Поскольку такие породы встречались и ранее в других трубках Жлобинского поля, а их петрографическая диагностика довольно уверенна и не вызывает особых затруднений [3], здесь они не рассматриваются. Что касается карбонатитов, которые впервые встречены среди вулканических и других магматических образований Жлобинского поля диатрем, то их петрографическая идентификация базировалась в основном на результатах макро- и микроскопического (в шлифах) изучения и не была подтверждена

представительными аналитическими данными по их вещественному составу. Поэтому настоящая работа посвящена этим породам.

Карбонатиты, вскрытые скважиной №772 – породы пепельно-серого цвета, в измененных разностях с зеленоватым оттенком, мелко-тонкозернистые, массивной текстуры, видимо, В эндоконтактовой зоне, сильно трещиноватые, частыми местами, разноориентированными кальцит-цеолитовыми(?) прожилками толщиной 0,5см. Основными породообразующими минералами ЭТИХ пород являются кальцит, тетраферрифлогопит и рудные. Кальции составляет большую часть (около 60 – 65%) породы породы. образует основную, карбонатную "матрицу" виде неравномернозернистых оптически разноориентированных агрегатов и отдельных более крупных аллотриоморфных монокристаллов. Агрегаты кальцита более или менее равномерно "нашпигованы" чешуйками и отдельными более крупными пойкилокристаллами тетраферрифлогопита и мелкими (до 0,1-0,2MM) зернами рудных Тетраферрифлогопит, содержание которого в породе около 25–30%, имеет все присущие этому минералу оптические характеристики. Важнейшей из них (диагностической) является обратная схема абсорбции. В проходящем свете тетраферрифлогопит от желто-бурого до светло-буровато-желтого цвета. Его кристаллы (чешуйки) имеют четкие, в большинстве неровные, частично линейные (кристаллографические) ограничения и явно выраженный идиоморфизм относительно вмещающего кальцита. Рудные минералы (в количестве 5–7%), представленные в основном магнетитом, образуют две четко различающиеся генерации: 1) относительно крупные (0,1–0,2 мм) округло-изометричные и тетрагональные зерна, реже их сростки; 2) мелкие (0,01-0,05 мм) зерна примерно такого же габитуса. Из второстепенных минералов микроскопически определяются: калиевый полевой шпат в виде единичных мелких ксеноморфных выделений среди агрегатов кальцита и апатит (микрокристаллы, включенные в тетраферрифлогопит), а из вторичных - хлорит, частично развитый по тетраферрифлогопиту. Такой минеральный состав пород вместе с их структурноособенностями позволяет отнести ИХ флогопит-кальцитовым текстурными К карбонатитам.

С целью более уверенной диагностики этих пород нами проведено, кроме петрографического, изучение их химического (породообразующие оксиды, редкие, редкоземельные элементы) и изотопного состава углерода и кислорода. Результаты этих анализов приведены в таблице.

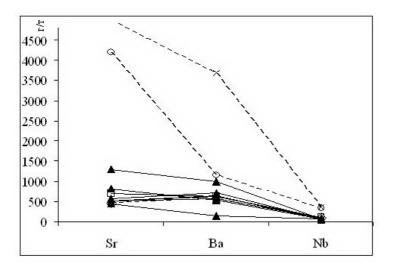
рассматриваемых породах СаО (27,4–31,5%), Высокое содержание относительно небольшом количестве MgO (8,4-9,8%), свидетельствует о том, что резко преобладающим или единственным породообразующим карбонатным минералом в них является кальцит. А весь оксид Мg, судя по минеральному составу пород и содержанию в кремнезема (14,0-16,8%), принадлежит тетраферрифлогопиту количественном отношении породообразующему минералу этих пород. Рентгеновская диагностика их карбонатной составляющей подтвердила отсутствие в них доломита и железистых карбонатов. И это – при достаточно высоком содержании железа (сумма оксидов Fe – 8,8–13,8%), главными "носителями" которого в этих породах являются магнетит и тетраферрифлогопит. Устанавливается достаточно высокое содержание титана (TiO₂ =1,7-2,9%, или Ті=11256-13912 г/т) и сравнительно низкое (для карбонатитов) - фосфора $(P_2O_5=0,27-1,53\%)$. Последнее обусловленно незначительным содержанием в породах апатита и практическим отсутствием, по крайней мере в изученных шлифах, редкоземельных фосфатов. Апатит, судя по содержанию фтора (0,25%), представлен фторапатитом. Во всех проанализированных образцах, при существенном колебании суммы щелочей (1,43-3,53%), К₂О резко преобладает над Na₂O, содержание которого не превышает 0,35%.

Таким образом, и по содержанию главных породообразующих оксидов изученные породы соответствуют флогопит-кальцитовым карбонатитам. Существенные отклонения в одном их проанализированных образцов содержания некоторых оксидов обусловлены его "засорением" ксеногенным материалом. В пользу этого свидетельствует прежде всего

Вещественный состав карбонатитов Жлобинского поля диатрем, вскрытых скважиной № 772 (породообразующие оксиды ---в масс.%, микроэлементы – в г/т)

Компо- ненты	Проанализированные образцы и глубина их отбора (м)								
	1	2	3	4	5	6	среднее		
	228,6м*	228,6 м**	228,6м***	228,6-235,2м***	235,2м*	242-245м***	-		
SiO ₂	16,80	15,17	16,94	15,58	13,97	20,29	16,46		
TiO ₂	1,73	2,13	2,32	2,15	1,67	2,86	2,14		
Al_2O_3	3,35	4,40	4,40	4,30	3,04	5,20	4,11		
Fe ₂ O ₃ +	10,90	13,78	8,29	8,62	8,80	8,40	9,8		
FeO	_	_	4,34	4,67	-	3,97	4,33		
MnO	0,22	0,24	0,26	0,22	0,12	0,27	0,22		
MgO	9,80	8,36	8,40	8,40	9,28	8,40	8,77		
CaO	30,3	28,44	27,35	27,83	31,5	21,67	27,85		
SrO	1	_	0,07	0,06	-	0,10	0,08		
K ₂ O	2,58	1,64	2,18	1,75	3,53	0,99	2,11		
Na ₂ O	0,17	0,26	0,35	0,25		0,44	0,29		
P_2O_5	0,58	0,56	1,05	0,99	0,27	1,53	0,83		
F	_	_	0,25	0,25	- 4	0,24	0,25		
CO ₂	22,4		19,7	20,6	27,6	21,0	22,26		
H ₂ O	_	_	3,7	4,03		4,43	4,05		
п.п.п.	_	24,22	_		0-	_	_		
Сумма	98,91	99,70	99,59	99,68	99,92	99,79			
Be	3,30	_	2,51	2,39	2,28	1,88	2,47		
Sc		_	24,65	26,74	26,23	32,71	27,58		
Ti	_	_	11256	11619	11177	13912	11991		
V	370,00	291,00	244,28	233,90	241,60	316,19	282,82		
Cr	1000,00	784,00	624,27	597,83	614,30	795,50	735,98		
Co	70,00	45,00	64,17	63,15	62,97	77,03	63,72		
Ni	430,00	236,00	217,49	258,40	254,68	229,11	270,95		
Cu	_		334,86	319,44	326,17	415,55	349		
Zn	ı	-	96,73	78,54	77,06	65,31	79,41		
Ga	_		8,81	9,78	9,35	11,24	9,8		
Ge	_		1,04	1,31	1,39	0,59	1,08		
Rb	_	38,00	51,40	44,91	44,87	33,54	42,54		
Sr	1300,00	505,00	562,91	510,38	507,32	815,14	700,12		
Y	26,00	14,00	10,53	14,16	13,23	8,28	14,36		
Zr	170,0	138,00	109,17	111,28	118,27	136,46	130,53		
Nb	65,00	93,00	71,31	55,77	80,52	78,04	73,94		
Mo		_	0,26	0,47	0,45	1,08	0,57		
Sn		_	1,01	1,00	1,10	1,19	1,07		
Sb	_	_	0,09	0,09	0,13	0,09	0,1		
Cs			0,56	0,44	0,45	0,54	0,5		
Ba	1000,00	562,00	708,55	636,81	618,91	531,08	676,22		
Hf			2,85	2,64	3,14	3,27	2,97		
Ta	_	_	3,33	2,74	3,67	4,47	3,55		
W	_	_	0,73	0,84	0,91	1,34	0,95		
Tl	_	_	0,09	0,05	0,06	0,23	0,11		

Pb	9,00	_	9,14	7,93	7,80	3,92	7,56
Th	_		9,21	8,84	8,88	11,59	9,63
U	_	-	1,59	1,67	1,61	1,93	1,7
La	50,00		87,96	84,00	79,20	44,34	69,1
Ce	_		140,06	133,39	136,99	72,01	120,61
Pr	_		12,71	12,61	12,71	6,35	11,09
Nd	_	_	38,75	43,15	40,91	22,49	36,33
Sm	_		5,08	5,31	5,57	2,75	4,68
Eu	_	1	1,47	1,65	1,60	0,89	1,4
Gd	_		0,48	0,54	0,55	2,76	1,08
Tb	_		0,17	0,31	0,38	0,27	0,28
Dy	_	_	2,47	3,13	2,93	1,59	2,55
Но	_		0,46	0,57	0,55	0,32	0,5
Er	_	_	1,09	1,29	1,27	0,80	1,11
Tu	_	_	0,14	0,18	0,17	0,11	0,15
Yb	2,00	_	0,94	1,08	0,99	0,63	1,13
Lu	_	_	0,15	0,17	0,15	0,10	0,14
δ ¹³ C	-6,4	_	_	-6,7	_	-8,3	-7,1
δ ¹⁸ O	+23,2	_		+22,1	(-)	+22,9	+22,7


Анализы выполнены: * – в ИГиГ НАН Беларуси, определения породообразующих оксидов – методом РФА, элементов-примесей – количественным спектральным методом; ** – в ИГЕМ РАН, г. Москва, методом РФА; *** – в Институте геохимии им. А.П.Виноградова, г. Иркутск, методом ICP-MS при низком, среднем и высоком разрешениях; изотопный анализ С и О – в ИГиГ НАН Беларуси. Под индексом Fe_2O_3 + – сумма оксидов железа. Породообразующие оксиды приведены в масс.%, микроэлементы в г/т; знак «—» – компонент не определялся.

повышенное (>20%) содержание в нем кремнезема.

Сравнительный анализ полученных данных о распределении в карбонатитах Беларуси элементов-примесей (см. таблицу и рис. 1, 2) показывает, что по основным (характеристическим) редким элементам и почти по всему спектру РЗЭ они почти соответствуют породам кимберлитовой ассоциации или значительно ближе к ним, чем к "типичным" карбонатитам. При этом наиболее близки к кимберлитам рассматриваемые породы по содержанию Сг, Sr, Ba и Nb, несколько отдаляясь от них по низкому содержанию Ni и более высокому – V. Особенно отличаются изученные породы от "типичных" карбонатитов по содержанию Sr и Ba. Не выявлено характерного для карбонатитов обогащения Sr и Co относительно Ba и Ni. Существенно повышено содержание в изученных карбонатитах V, Sc, Ti сравнительно с породами кимберлитовой ассоциации и "типичными" карбонатитами. Содержание РЗЭ (155-291 г/т) в изученных породах значительно ниже, чем в карбонатитах различных регионов, при этом устанавливается характерное как для кимберлитов, так и карбонатитов преобладание легких лантаноидов над тяжелыми.

Степень их фракционирования (La/Yb) -61-93, европиевая анамалия отсутствует, но четко выражен Gd-минимум, который не наблюдается в сравниваемых кимберлитах и карбонатитах.

Определения изотопного состава углерода рассматриваемых пород дали значения $\delta^{13}C$ от -8,3 до -6,4%, среднее -7,1%. Это практически совпадает с узким интервалом вариаций $\delta^{13}C$ ($-8 \div -6\%$), в котором концентрируется большинство определений $\delta^{13}C$ в карбонатитах, а также с данными об изотопном составе углерода неокрашенных алмазов (среднее -7%) из кимберлитовых трубок разных провинций [7, 8]. По мнению многих авторов, значение $\delta^{13}C\approx -7\%$ характеризует изотопный состав глубинного (мантийного) углерода и является главным критерием мантийной природы карбонатного вещества в алмазах, карбонатитах и

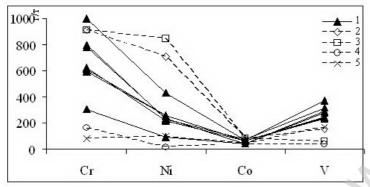


Рис. 1. Содержание малых и редких элементов в карбонатитах Беларуси (скв.772).

1 — карбонатиты Беларуси; 2 — среднее для карбонатных жил кимберлитовой ассоциации, 3—среднее для кимберлитов, 4— среднее для карбонатитов [6]; 5—карбонатиты комплекса калиевых щелочных пород западной рифтовой зоны Восточной Африки [10].

ювенильных карбонатах кимберлитов. Менее определенны результаты по изотопии кислорода карбонатитов Жлобинского поля. Полученные для них значения δ^{18} О $(22,1\div23,2\%)$ существенно выше интервала $6 \div 12\%$, В который укладывается большая часть определений δ^{18} О в карбонатитах и который считается характерным для изотопного состава кислорода этих пород.

Вместе с тем в карбонатитах многих проявлений [8, 9], частности, вулканических фаций рифтовой системы юго-восточной Африки [7], установлен довольно широкий диапазон вариаций $\delta^{18}O$ – от 5 до 27‰, в который вполне vкладываются значения карбонатитов Беларуси. Хотя такой широкий разброс значений δ^{18} О во карбонатитах многих получил удовлетворительного объяснения, их принадлежность к магматическим карбонатитам большинстве случаев не вызывает сомнений.

Это касается и карбонатитов Беларуси, которые, кроме повышенных значений δ^{18} О, по остальным

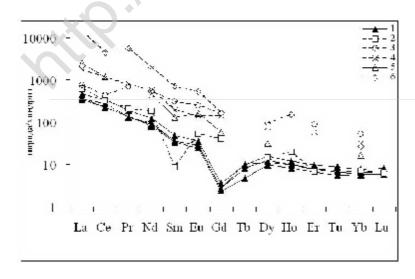


Рис. 2. Нормированные по хондриту графики распределения РЗЭ в карбонатитах Беларуси (скв.772).

1 — карбонатиты Беларуси; 2 — средний кимберлит [11]; 3 — кальцитовый карбонатит, Африка, Танганьика [12]; комплексы щелочных пород с калиевой спецификой: 4 — комплекс Форт-Портал, вулканогенные кальцитовые карбонатиты, 5—6 комплекс Мушугай-Худук: 5 — ранние кальцитовые карбонатиты, 6 — поздние кальцитовые карбонатиты [10].

диагностическим для карбонатитов критериям (минеральный и вещественный состав, структурно-текстурные особенности, масштаб проявления и морфология тел, их ассоциация с калиевыми щелочно-ультраосновными породами трубок взрыва, расположенных в области позднепалеозойского интракратонного рифтогенеза) можно достаточно уверенно отнести к высокотемпературным магматическим флогопит-кальцитовым карбонатитам мантийной природы, представленным эруптивно-субвулканическими фациями. Этими же критериями, с учетом резко повышенного (по сравнению с "типичными" карбонатитами) содержания Сг, а также пониженных, близких к кимберлитовым, содержаний Sr, Ba, Nb и P3Э, определяется принадлежность карбонатитов, впервые выявленных в Беларуси, к первому формационному типу [5], или, по другим авторам, к кимберлитовым карбонатитам [13].

Работа выполнена при финансовой поддержке БРФФИ (проект X06P-136) и РФФИ (грант 06-05-81016).

Литература

- 1. Веретенников Н.В., Лапцевич А.Г. Ассоциация верхнедевонских щелочно-ультраосновных вулканических пород и карбонатитов в трубках взрыва Беларуси// Геохимия, петрология, минералогия и генезис щелочных пород. Миасс, 2006. С.318-322.
- 2. Веретенников Н.В., Лапцевич А.Г. Первая находка карбонатитов в платформенном чехле Беларуси// Докл. НАН Беларуси. 2007. Т. 51 . № 1. С.84-88.
- 3. Веретенников Н.В., Корзун В.П., Лапцевич А.Г., Михайлов Н.Д. Петрология трубок взрыва Жлобинского поля (Беларусь)// Літасфера. 2001. №1(14). С.46-55.
- 4. *Владыкин Н.В.* Алданская провинция К-щелочных пород и карбонатитов: вопросы магматизма, генезиса и мантийных источников// Щелочной магматизм и проблема мантийных источников. Иркутск, 2001. С. 18-45.
- 5. Владыкин Н.В. Формационные типы карбонатитов, их геохимия и генезис// Геохимия, петрология, минералогия и генезис щелочных пород. Миасс, 2006. С.44-50.
- 6. Карбонатиты и кимберлиты (взаимоотношение, минерагения, прогноз). М.: НИА-Природа, 2005. 540 с.
- 7. *Кулешов В.Н.* Изотопный состав и происхождение глубинных карбонатитов. М.: Наука, 1986. 126 с.
- 8. *Deines P.* Stable isotope variations in carbonatites // Carbonatites. Genesis and Evolution (Edited by Keith Bell). London. 1989, p. 301-359.
- 9. Владыкин Н.В., Morikiyo Т., Miyazaki Т., Цыпукова С.С. Геохимия изотопов углерода и кислорода карбонатитов Сибири и некоторые геодинамические следствия // Глубинный магматизм, его источники и их связь с плюмовыми процессами. Иркутск. 2004. С. 89-107.
 - 10. Самойлов В.С. Геохимия карбонатитов. М.: Наука, 1984. 213 с.
- 11. Кимберлиты и кимберлитоподобные породы: Кимберлиты ультраосновная формация древних платформ / В.М. Владимиров, Л.В. Соловьева, А.И. Кисилев и др.Новосибирск: Наука, 1990. 264 с.
- 12. *Schofield A.*, *Haskin L.* Rare-earth distribution patterns in light terrestrial materials// Geochim. Et cosmochim.acta, v.28, 1964.