THE EXPERIMENTAL MODELING OF AIR OXIDATION ILMENITE

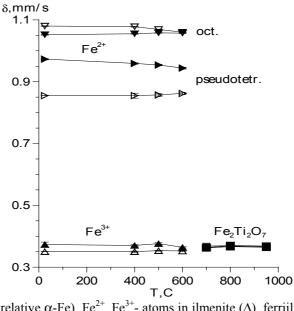
D.A.Khramov, M.A.Glazkova, V.S.Rusakov, V.S.Urusov

(Vernadsky Institute of Geochemistry and Analytical Chemistry RAS, Moscow, Russia) khramov@geokhi.ru; phone: (095) 939-70-53

Key Words: experimental modeling, oxidation, ilmenite, Mössbauer spectroscopy

The study of ilmenite (FeTiO₃) - I oxidation mechanism causes an essential interest as from a standpoint of understanding the minerals evolution processes as from inorganic materials positions. It is the experimental modeling of similar processes at the controlled (T, P, f_{O2}) – conditions to allow reconstructing the history of mineral formation and their ensuing transformations.

In this work the structural and phase mechanisms of air oxidation (T = $400 - 950^{\circ}$ C) stoichiometrical samples of *I* and *F* with titanium deficiency (Fe³⁺_{0.16}Fe²⁺_{0.86}Ti⁴⁺_{0.88}O₃) were studied by ⁵⁷Fe Mössbauer spectroscopy (MS) and X-ray. The samples were synthesized at temperature T = 1150° C, which is characteristic of the igneous processes running. It is determined, that the process of oxidation of *I* and *F* under T = $400-600^{\circ}$ C is realized by two parallel ways: 1) the transition of Fe²⁺ ions to the Fe³⁺ in the mineral structure; 2) the formation of hematite (α -Fe₂O₃) in amounts $\approx 8\%$ (400° C) and $\approx 22\%$ (600° C). The following schemes of local charge compensation are the most probable: Fe²⁺ + Ti⁴⁺ \rightarrow Fe³⁺(Fe) + Fe³⁺(Ti); 3Fe²⁺ \rightarrow 2Fe³⁺(Fe) + V (Fe). At the temperature of oxidation T = 700° C the *I* structure is completely destroyed while hematite and Fe₂Ti₂O₇ (landauite) phases are forming. The further increasing of the oxidation temperature ($800-950^{\circ}$ C) does not lead to other phases formed in the system. At T > 1150° C pseudobrookite (Fe₂TiO₅) is formed.


The oxidation degrees of *I* and *F* k = (Fe³⁺ /(Fe³⁺ + Fe²⁺)) are monotonously increased with the

The oxidation degrees of I and $Fk = (Fe^{3+}/(Fe^{3+} + Fe^{2+}))$ are monotonously increased with the oxidation temperature rise and they have one and the same value in within the accuracy of fitting for I and F in the structure destroy range (600-700 0 C) and equal to 29-30(2)%. The concentration of Fe^{2+}_{ptet} ions with «pseudotetrahedral» coordination is decreased from 20% to 17% for I and increased from 3% to 8% - for F in dependence on I value.

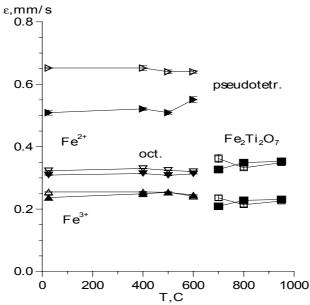

In the I and F structure the isomer shift values for $Fe^{2+}_{ptet.}$ ions show that they don't practically depend on k and are significantly differed for I and F: 0.85 mm/s - (I) and 0.96 mm/s - (F). The isomer shifts are given relative to metal iron. These differences is indicative to essentially various character of the $Fe^{2+}_{ptet.}O_6$ octahedrons distortions in the I and F structure (Fig. 1,2).

Table
The products of ilmenite and ferriilmenite oxidation

Initial samples synthesized at $T = 1150^{\circ}C$	The samples oxidized on air			
Ilmenite (FeTiO ₃)	(Ferriilmenite) (Hematite α-Fe ₂ O ₃)	Region of dest- ruction	(Landauite $Fe_2Ti_2O_7$) (Hematite α - Fe_2O_3)	(Pseudobrookite Fe ₂ TiO ₅)
Ferriilmenite (Fe ³⁺ _{0.16} Fe ²⁺ _{0.86} Ti ⁴⁺ _{0.88} O ₃)	(Ferriilmenite) (Hematite α-Fe ₂ O ₃)	Region of dest- ruction	(Landauite $Fe_2Ti_2O_7$) (Hematite α - Fe_2O_3)	(Pseudobrookite Fe ₂ TiO ₅)

Fig.1. The isomer shifts (relative α -Fe) Fe²⁺, Fe³⁺- atoms in ilmenite (Δ), ferrillmenite (Δ) and landauite (Fe₂Ti₂O₇).

Fig.2. Quadrupole splitting (QS = 2ϵ) Fe²⁺, Fe³⁺- atoms in ilmenite (Δ), ferrillmenite (Δ) and landauite (Fe₂Ti₂O₇).

Electronic Scientific Information Journal "Herald of the Department of Earth Sciences RAS" № 1(21) 2003 Informational Bulletin of the Annual Seminar of Experimental Mineralogy, Petrology and Geochemistry – 2003 URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2003/informbul-1_2003/mineral-26e.pdf Published on July 15, 2003

© Department of the Earth Sciences RAS, 1997-2003 All rights reserved