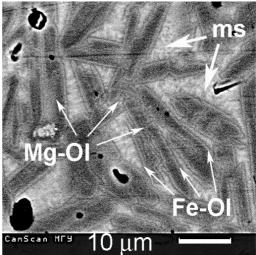

Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» №1(21)′2003 *URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2003/informbul-1/planet-10.pdf*


МОДЕЛИРОВАНИЕ ПРОЦЕССОВ «КОСМИЧЕСКОГО ВЫВЕТРИВАНИЯ» В ПОВЕРХНОСТНОМ СЛОЕ РЕГОЛИТА ФОБОСА

Шингарёва Т.В., Базилевский А.Т., Фисенко А.В., Семёнова Л.Ф., Рощина И.А. (ГЕОХИ РАН, shingareva@geokhi.ru), Хирои Т., Питерс К.М. (геол.ф-т ун-та им.Брауна, США), Мороз Л.В. (ин-т планетологии - DLR, Германия), Гусева Е.В., Коротаева Н.Н. (геол. ф-т МГУ)

Введение. Низкое альбедо поверхности и низкая средняя плотность Фобоса, а также спектральные данные, полученные еще в конце 70-х годов, привели к предположению, что по составу материал этого спутника Марса больше всего похож на углистые хондриты типа СМ [1]. Дальнейшие исследования показали, что поверхность Фобоса неоднородна и состоит из двух оптически разных материалов, ни один из которых не соответствует спектрам СМ-хондритов [2-4]. «Красный» наклон, неглубокие характеристические полосы поглощения и практически полное отсутствие полосы связанной воды в спектре Фобоса, по-видимому, обусловлены «космическим выветриванием» материала поверхности, факторами которого являются микрометеоритная бомбардировка и облучение солнечным ветром и космическим излучением. Целью предлагаемой работы является моделирование «космического выветривания» реголита Фобоса за счет микрометеоритной бомбардировки поверхности и изучение происходящих при этом оптических и минералогических изменений вещества.

Рис. 1. Спектры отражения изначального образца «смеси», фракции >125 µm измененного вещества и заднего полушария Фобоса [3].

Рис. 2. РЭМ- изображение капли расплава измененного вещества. Видны удлиненные кристаллы Mg-оливина с тонкими оболочками Fe-оливина и обогащенный Fe мезостазис (ms).

Описание эксперимента. Для создания материала-аналога реголита Фобоса, соответствующего составу углистого хондрита типа СМ, была составлена искусственная смесь: серпентин – 47%, силикатная фракция метеорита Царёв – 46%, керит – 5%, кальцит – 2%. Результаты рентгенофлуоресцентного анализа смеси и ее основных компонентов приведены в табл.1. Метеорит Царёв представляет собой ударно-метаморфизованный хондрит группы L5 [5]. Образец был растерт в порошок (размер частиц 0.05 – 100 мкм, причем ~90% составляли частицы <30 µm). Ударное плавление было смоделировано с помощью облучения образца твердотельным квазинепрерывным лазером ИАГ:Nd³+ (1.064 µm, 30–40 кГц, 1.2 кВт) в вакууме (2–3)х10⁻⁴ мм рт. ст. [6]. Диаметр лазерного пучка, сфокусированного на поверхности образца, ~ 100 µm, длительность импульсов составляла 0.5–1 µс. В результате лазерной обработки частицы порошка плавились и превращались в шарики стекла, часть которых слиплась с образованием стекловатых агрегатов размером <300 µm, которые были рассеяны на несколько размерных фракций. Наблюдения под бинокулярным микроскопом показали, что фракция >125 µm представляет собой только расплавленный (или измененный) материал. А фракции <125 µm включают как переплавленные, так и неизмененные частицы. Полученное вещество фракции >125 µm было

разделено на две части: одна была растерта в порошок с размером частиц < 100 µm, а другая оставлена без изменения.

Спектры. Спектры отражения в интервале 0.3-25 µm измерялись в Университете Брауна на спектрометрах Nicolet 740 и Nexus 870 FTIR. На рис.1 приведены спектры отражения изначального образца, фракции >125 µm измененного вещества и спектр заднего полушария Фобоса [3]. Интенсивность полос поглощения ионов ОН 2.7-3 µm и СН 3.4-3.5 µm в измененном образце значительно снизилась. Такая же тенденция наблюдается в спектрах СМ-хондрита Murchison при его нагревании [7]. Измельченный измененный образец (>125 µm) светлее спектра Фобоса, но его общий «красный» наклон и «бездетальность» в интервале 0.3-2.5 µm совпадают со спектром Фобоса в пределах погрешностей измерений.

Минералогия и петрография. Полированные аншлифы измененного образца изучались при помощи РЭМ CamScan 4 DV и прибора Link AN-10000 на Геологическом факультете МГУ. Усредненные электронно-зондовые анализы различных составляющих образца представлены в табл. 1. К сожалению, нам не удалось достичь однородной структуры изначального вещества: отдельные частицы серпентина оказались намного крупнее (порядка 100 µm), чем общая масса < 30 µm. В результате лазерного нагрева некоторые крупные частицы серпентина остались непереплавленными. Капли расплава измененных образцов практически не содержат непереплавленных зерен, но к некоторым из них прилипли непереплавленные частицы. Расплав частично раскристаллизован и имеет интерсертальную структуру. Валовой состав расплава практически не отличается от состава исходного неизмененного вещества. Он лишь обеднен FeO и слегка обогащен Al₂O₃ и CaO, остальные изменения не превышают допустимой ошибки определения. Кристаллизация расплава привела к образованию скелетных игольчатых кристаллов Мдоливина (Fa=6.8) с очень узкой (< 1 µm) внешней железистой зоной (рис. 2). Они сцементированы богатой железом стекловатой основной массой, неоднородной по составу: «светлые» (в электронном изображении) участки существенно обогащены Fe по сравнению с «темными» (табл. 1).

Выводы. Лазерная обработка привела к плавлению частиц аналога вещества Фобоса с образованием скелетных зональных кристаллов Mg-оливина, сцементированных обогащенным железом расплавом и обезвоживанию образца. Полное исчезновение 3-µm детали в спектре измененного образца не было достигнуто, по-видимому, из-за оставшихся непереплавленных частиц серпентина. Тонкие (< 1 µm) железистые оболочки кристаллов оливина и наличие существенно обогащенного Fe расплава, по-видимому, приводят к общему потемнению и «покраснению» спектров измененного образца. Такие же изменения, вероятно, происходят и на Фобосе в результате микрометеоритной переработки поверхностного слоя реголита. «Красный» наклон и отсутствие абсорбционных полос сближают спектр измененного лазерной обработкой вещества-аналога со спектром Фобоса (в диапазоне 0.3–2.5 µm).

Таблица 1

	CM	Царев	з Серпентин		"Смесь"		Измененный образец			
			C	Без	C	Без	Валовой состав расплава		оливин	
			ППП	ППП	ППП	ППП	средний	"светлый"	"темный"	
SiO ₂	32.70	44.84	40.71	47.26	39.24	44.28	45.4	42.5	48.3	42.3
TiO ₂	0.11	0.14	0.02	0.02	0.08	0.09	0.1	0.1	0.1	0
Al_2O_3	2.56	2.56	0.48	0.56	1.43	1.61	1.9	1.6	2.2	0.1
FeO	32.92	20.95	4.73	5.49	13.54	15.28	12.7	17.8	7.6	6.5
MnO	0.25	0.36	0.04	0.05	0.19	0.21	0.3	0.2	0.3	0.2
MgO	23.04	27.86	39.67	46.05	31.45	35.50	36.4	35.1	37.7	50.3
CaO	2.18	1.97	< 0.01	< 0.01	1.93	2.18	2.4	1.9	2.8	0.3
Na ₂ O	1.26	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	1	-	-
K ₂ O	0.11	0.15	< 0.01	< 0.01	0.04	0.05	-	1	-	-
P_2O_5	0.56	0.48	0.03	0.03	0.23	0.26	0.3	0.7	-	-
Cr_2O_3	1.07	0.62	0.43	0.51	0.47	0.53	0.4	ı	0.9	0.3
S	3.24	H.o.	H.o.	H.o.	H.o.	H.o.	0.1	0.1	0.1	-
Σ	100.0	99.94	86.14	100.0	88.61	100.0	100.0	100.0	100.0	100.0
ППП			12.98		10.92					
$\Sigma_{\Pi\Pi\Pi}$			99.12		99.53					
MG#	55.5	70.3		93.7		80.5	83.6	77.8	89.8	93.2

Работа выполнена при финансовой поддержке РФФИ (по проекту № 02-05-65156)

Литература

- 1. Pang K.D. et al. (1978) Science, 199, N 4324, 64-66;
- 2. Murchie S.L. et al. (1991) JGR, 96, N B4, 5925-5945;
- 3. Murchie S., Erard S. (1996) Icarus, 123, 63–86;
- 4. Murchie S.L. et al. (1999) JGR, 104, N E4, 9069–9079;
- 5. Семененко В.П., Самойлович Л.Г. (1982) Метеоритика, 41, 31–36;
- 6. Moroz L.V. et al. (1996) Icarus, 122, 366–382; 7. Hiroi T. et al. (2003) LPSC XXXIV, #1324.

Вестник Отделения наук о Земле РАН - №1(21) 2003
Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2003 года (ECЭМПГ-2003)
URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2003/informbul-1/planet-10.pdf
Опубликовано 15 июля 2003 г.

© Отделение наук о Земле РАН, 1997 (год основания), 2003 При полном или частичном использовании материалов публикаций журнала, ссылка на "Вестник Отделения наук о Земле РАН" обязательна