ENTHALPY OF FORMATION OF NATURAL LI-MUSCOVITE

Kiseleva I.A.*, Ogorodova L.P.*, Melchakova L.V.*, Shuriga T.N.**

** M.V.Lomonosov Moscow State University, Department of Geology, Russia

** N.M.Fedorovsky VIMS, Russia

kiseleva@geol.msu.ru; phone (095) 939-13-49

Key words: thermochemistry, solution calorimetry, enthalpy of formation, muscovite

The melt solution calorimetry was used to determine the enthalpy of formation of natural Limuscovite on a high-temperature heat flux Tian-Calvet microcalorometer. The natural sample having high lithium content (Li₂O 2.75 %) from rare metal pegmatites (Toporok deposit, East Sajany, Russia) was choused for investigations. The chemical formula was calculated on the basis of 22 charges: $(K_{0.85}Na_{0.02}Rb_{0.11}Cs_{0.01})_{0.99}(Li_{0.74}Al_{1.62}Fe^{2^+}_{0.01}Fe^{3^+}_{0.02}Mn_{0.05})_{2.44}(Si_{3.22}Al_{0.78})_{4.00}O_{10}[F_{0.39}(OH)_{1.02}O_{0.29}]_{1.70}$.

The lattice parameters (a=5.19 Å, b=8.99 Å, c=20.10 Å, β =95.33°) are determined; the polytype of the mica studied is 2M₁. The calorimetric experiments were performed by "drop" method: the sample of Li-muscovite of mass between 3 mg and 10 mg (\pm 2·10⁻³) was dropped from room temperature into calorimeter at T=973 K with molten 2PbO·B₂O₃, the heat effect measured was the sum of the heat content and the heat of solution of the muscovite, [H^o (973 K)- H^o (298.15 K) + $\Delta_{sol}H^o$ (973 K). The value obtained (473.1 \pm 12.2 J/g) is in a good agreement with our calorimetric solution results for natural muscovite having composition which is close to the theoretical one, ($K_{0.89}Na_{0.11}$)_{1.00} ($Al_{1.84}Mg_{0.09}Fe^{2^+}_{0.07}Fe^{3^+}_{0.05}$)_{2.05} (Si_{3.01}Al_{0.99})_{4.00}O₁₀[(OH)_{1.96}O_{0.02}]_{1.98} (465.9 \pm 10.0 J/g); it shows minor energetic influence of substitution of Al for Li. Using obtained experimental and reference data [1] for mineral, constituent oxides and LiF the standard enthalpy of formation of Li-muscovite from the elements was calculated, $\Delta_f H^o$ (298.15 K) = -5899.8 \pm 12.9 kJ/mol. Obtained molar value of the enthalpy of formation of Li-muscovite from the elements agrees also within experimental uncertainties with our data for muscovite with close to idealized stoichiometry composition (-5914.6 \pm 11.1 kJ/mol).

Table. Thermochemical data used in calculation of the enthalpy of formation of Li-muscovite (kJ/mol)

	$[H^{o}(973 \text{ K})-H^{o}(298.15 \text{ K}) +$	
Substance	$\Delta_{sol}H^{o}(973 \text{ K})]$	$-\Delta_f H^{\circ}_{el}(298.15 \text{ K})$
Na ₂ O(s)	-111.8±0.8	414.8±0.3
$K_2O(s)$	-193.7±1.1	363.2±2.1
$Li_2O(s)$	-15.3±4.2	597.9±2.1
$Rb_2O(s)$	-223.2±1.2	338.0±8.0
$Cs_2O(s)$	-230.0±4.1	346.0±1.2
MnO(s)	43.1±0.8	385.2±0.5
$Fe_2O_3(s)$	171.6±1.9	826.2±1.3
Al ₂ O ₃ (corund)	107.38±0.59	1675.7±1.3
SiO ₂ (quartz)	39.43±0.21	910.7±1.0
LiF(s)	92.8±1.2	616.9±0.8
$H_2O(1)$	40.9±2.5	285.8±0.1

Reference

1. *Robie R.A. Hemingway B.S.* Thermodynamic properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascal) Pressure and at Higher Temperatures // U.S. Geol. Surv. Bull. 1995. N. 2131. 462 p.

This work is supported by RFFI (grant № 03-05-64283)

Electronic Scientific Information Journal "Herald of the Department of Earth Sciences RAS" № 1(22) 2004 Informational Bulletin of the Annual Seminar of Experimental Mineralogy, Petrology and Geochemistry – 2004 URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2004/informbul-1_2004/mineral-6e.pdf Published on July, 1, 2004