РАСПРЕДЕЛЕНИЕ РОДИЯ МЕЖДУ FE-NI СУЛЬФИДНЫМ РАСПЛАВОМ И МОНОСУЛЬФИДНЫМ ТВЕРДЫМ РАСТВОРОМ (ПО ДАННЫМ НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИИ) Синякова Е.Ф., Косяков В.И.*, Ненашев Б.Г.

Институт минералогии и петрографии СО РАН (ИМП СО РАН) *efsin@uiggm.nsc.ru* *Институт неорганической химии им. А.В. Николаева СО РАН (ИНХ СО РАН) *kosyakov@che.nsk.su*

<u>Ключевые слова</u>: система Fe-Ni-S, направленная кристаллизация, родий, коэффициенты распределения, моносульфидный твердый раствор, сульфидный расплав

Согласно литературным данным измеренные значения коэффициентов распределения родия (k_{Rh}) в системе Cu-Fe-Ni-S лежат в интервале от 0.2 до 21, т.е. по данным разных авторов при кристаллизации этот элемент может концентрироваться как в расплаве, так и в mss [1-7]. Показано, что величина k_{Rh} может быть как больше, так и меньше единицы. В обзорной работе [8] экспериментальные точки зависимости k_{Rh} от концентрации серы в расплаве образуют размытое поле. Это означает, что металлические компоненты расплава существенно влияют на величину k_{Rh} и для понимания особенностей поведения этой примеси необходимо определить функциональную зависимость k_{Rh} от концентрации Cu, Ni и S в поле первичной кристаллизации mss. В настоящей работе мы ограничились исследованием фракционирования родия при кристаллизации Fe-Ni сульфидного расплава.

Ранее для измерения коэффициентов распределения проводили изотермический отжиг образцов и, после закалки, исследовали в них химический состав фаз. Для решения сформулированной выше задачи этим методом необходимо большое количество образцов. Более подходящим способом получения данных о коэффициентах распределения компонентов является направленная кристаллизация, позволяющая измерять составы сосуществующих фаз вдоль некоторой траектории на поверхности ликвидуса [9]. Это дает возможность построить искомую зависимость по данным о распределении макро и микрокомпонентов вдоль нескольких направленно закристаллизованных образцов.

С этой целью проведена направленная кристаллизация шести образцов, состав которых и условия экспериментов приведены в таблице:

	Исходный состав, ат.%				Температура,°С	
Образец	S	Fe	Ni	Rh	T_1	T ₂
Ι	45.000	42.475	12.475	0.050	1010	680
II	43.000	28.400	28.400	0.200	860	636
III	46.700	26.550	26.550	0.200	970	724
IV	47.000	17.900	34.900	0.200	962	727
V	48.000	9.900	41.900	0.200	967	633
VI	48.000	0	51.800	0.200	943	672

Примечание. Т₁ и Т₂ – температура в нижнем конце кварцевого контейнера в начале и в конце кристаллизации

Методика приготовления образцов и проведения эксперимента описана в [10]. В отличие от этой работы в исходную смесь макрокомпонентов вводили примесь родия чистотой 99.99%. Для проведения направленной кристаллизации ампулу с гомогенным расплавом опускали из горячей зоны в холодную со скоростью 2.3·10⁻⁸ м/с. Эти условия обеспечивали протекание процесса в квазиравновесном режиме [9].

Слиток длиной ~ 70 мм и диаметром ~ 7 мм разрезали на ~ 20 частей сечениями, перпендикулярными продольной оси. Фрагменты слитка были использованы для приготовления аншлифов, которые исследовали методами микроскопического, микрорентгеноспектрального и рентгенофазового анализа. Начальная часть всех слитков была образована из моносульфидного твердого раствора (Fe_zNi_{1-z})S_{1+δ}. Второй участок отвечал кристаллизации хизлевудитового твердого раствора (Ni_zFe_{1-z})_{3±δ}S₂. В конце слитка находилась смесь фаз, образовавшаяся при закалке остаточного расплава. В настоящей работе мы будем обсуждать поведение родия только при кристаллизации mss.

Известно, что ширина области гомогенности mss по сере уменьшается при снижении температуры [11]. В результате обусловленного этим частичного распада твердого раствора в монокристаллической матрице mss присутствовали пластинчатые включения тенита (образец I) или пентландита (образцы II-IV). В образцах V и VI включения отсутствовали. Для измерения химического состава mss, непосредственно выделяющегося из расплава, использовали расфокусированный зонд, позволяющий усреднять состав негомогенного образца. Материальный баланс по данным химического анализа выполнялся с точностью 2%.

Состав расплава в произвольный момент кристаллизации определяли по уравнениям материального баланса компонентов [9]. По этим данным были построены зависимости k_{Rh} ($x_{Nb}x_S$) для всех образцов. Их отображали в виде кривых в поле первичной кристаллизации mss на концентрационном треугольнике. Такие зависимости для Ni и Fe для всех слитков являются прямолинейными отрезками. Это обстоятельство позволяет, по нашему мнению, экстраполировать результаты экспериментов в область больших концентраций серы (до $x_S \sim 0.50 - 0.52$).

Данные направленной кристаллизации, дополненные собственными результатами для образцов, отожженных при 900°С (для $x_{Rh} = 0.0045$), и информацией из работ [1, 5, 6] были использованы для построения зависимости k_{Rh} (x_{Ni}, x_S) с применением стандартной программы Grapher Microsoft. Эта функция в виде изолиний k_{Rh} в области первичной кристаллизации mss представлена на рис.1.

Рис.1. Поле первичной кристаллизации mss в системе Fe-Ni-S с изолиниями коэффициентов распределения Rh. Точки I-VI соответствуют составам исходных образцов, AB – котектическая линия L \rightarrow mss + tn (γ -Fe,Ni твердый раствор), BCDEFG– моновариантная перитектическая линия L + mss \rightarrow hzss. Линия HKLMNO ограничивает часть поверхности ликвидуса, в которой выполнена экстраполяция экспериментальных данных для построения изолиний k_{Rh} . Линии IB, IIC, IIID, IVE, VF, VIG показывают изменение составов расплавов при кристаллизации соответствующих образцов. Линии IH, IIK, IIIL, IVM, VN, VIO – экстраполированные участки траекторий изменения состава расплава при направленной кристаллизации. Цифрами обозначены изолинии k_{Rh} .

Полученные результаты показывают сложный характер зависимости k_{Rh} от состава расплава. Видно, что родий может концентрироваться при кристаллизации как в расплаве ($k_{Rh} < 1$), так и в mss ($k_{Rh} > 1$). Граница между этими участками, отвечающая $k_{Rh} = 1$, совпадает с прямолинейной траекторией изменения состава расплава для образца III и отвечает направлению Fe_{0.4525}S_{0.5475} - Ni_{0.6477}S_{0.3523}.В работе [10] было показано, что разрез фазовой диаграммы вдоль этой траектории является квазибинарным, т.е. конноды лежат в плоскости этого разреза. Левее этой границы находится область поверхности ликвидуса, в которой родий концентрируется в расплаве, причем значение k_{Rh} резко падает по мере удаления от линии $k_{Rh} = 1$. В области, лежащей правее этой линии, родий концентрируется в mss за исключением небольшого участка, примыкающего к Ni-S границе концентрационного треугольника вблизи точки трехфазного равновесия между расплавом, NiS_{1-x} и Ni_{3±x}S₂. Видно, что k_{Rh} растет при увеличении содержания серы в расплаве для заданной величины Ni/(Ni+Fe), что согласуется с выводами работы [8].

Литература

- 1. Fleet M.E., Stone W.E. // Geochim. Cosmochim. Acta. 1991. V. 55. № 7. P. 245-253.
- 2. Fleet M.E., Chryssoulis S. L., Stone W.E., Weisener C.G. // Contrib. Mineral. Petrol. 1993. V. 115, PP. 36-44.
- 3. Barnes S.-J., Makovicky E., Makovicky M., Rose-Hansen J., Karup-Moller S. // Goldschmidt Conf., Edinburgh. Mineral. Mag. 1994. V. 58A. PP. 51-52.
- 4. Li C., Barnes S.-J., Makovicky E., Rose-Hansen, J., Makovicky M. // Geochim. Cosmochim. Acta. 1996. V. 60. № 7. PP. 1231-1238.
- *Ebel D.S., Campbell A.J.* // Geological Society of America Abstract with Program. 1998. V. 30A. P. 318.
- 6. Синякова Е.Ф., Косяков В.И., Колонин Г.Р. // Геология и геофизика. 2001. Т. 42. № 9. СС. 1354-1369.
- 7. Ballhaus C., Tredoux M., Spaeth A. // J. Petrol. 2001. V.42. № 10. PP. 1911-1926.
- 8. Barnes S.-J., Makovicky E., Makovicky M., Rose-Hansen J., Karup-Moller S // Can. J. Earth Sci. 1997. V. 34. PP. 366-374.
- 9. Косяков В.И. // Геология и геофизика. 1998. Т.39. № 9. СС. 1242-1253.
- 10. Косяков В.И., Синякова Е.Ф., Ненашев Б.Г. // ДАН. 2001. Т. 381. № 6. СС. 814–817.
- 11. Naldrett A.J., Craig J.R., Kullerud G. // Econ. Geol. 1967. V. 62. № 6. PP. 826-847.

Вестник Отделения наук о Земле РАН - №1(22) '2004 Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2004 года (ЕСЭМПГ-2004) URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2004/informbul-1/term-39.pdf Опубликовано 1 июля 2004 г

© Вестник Отделения наук о Земле РАН, 1997 (год основания), 2004

При полном или частичном использовании материалов публикаций журнала, ссылка на "Вестник Отделения наук о Земле РАН" обязательна