УДК 550.42+550.89+551.21+552.3+552.112+553.212+546.212+549.691

## ПРОТОСПУТНИКОВЫЙ ДИСК ВОКРУГ ЮПИТЕРА: P-Т ПАРАМЕТРЫ А.Б.Макалкин, В.А.Дорофеева\*.

Объединенный Институт физики Земли РАН, г. Москва \*Институт геохимии и аналитической химии им. В.И.Вернадского РАН, г. Москва Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант 98-05-64943.

## Вестник ОГГГГН РАН № 2(12)′2000, т. 2

URL:  $http://www.scgis.ru/russian/cp1251/h\_dgggms/2-2000/empg\_99/planet\_5.htm#begin$  © 2000 ОИФЗ РАН, ОГГГГН РАН

Исходные данные. Исследования образования Юпитера в околосолнечном диске (солнечной туманности) выявили следующие основные стадии (Сафронов, Рускол, 1982; Поллак и др., 1996; Рускол, Сафронов, 1998). Первая стадия продолжительностью 10<sup>7</sup> лет - рост зародыша планеты до критической массы около  $30 M_{\oplus}$ .. Зародыш состоит из твердого ядра (  $\approx 10~M_{\oplus}$ ) и газовой оболочки. После достижения растущей планетой критической массы, наступает стадия аккреции. Она начинается с быстрой аккреции газа в течение  $10^4$  лет, затем продолжается в течение периода  $t_a = 10^6 - 10^7$  лет до окончания образования планеты. Масштаб времени  $10^7$  лет для образования Юпитера согласуется с временами жизни газопылевых дисков вокруг молодых звезд солнечного типа. Пылевые частицы и планетезимали падали на растущий Юпитер вместе с газом. Минимальный планетоцентрический удельный угловой момент выпадавшего вещества составляет  $\Gamma \approx \Omega_J \, r^2_{H}/4$  (Рускол, 1982), где  $\Omega_J$  - угловая скорость орбитального движения Юпитера,  $r_H$  - радиус сферы гравитационного влияния Юпитера (сферы Хилла),  $r_H$  =  $R_{J}(M_{J}/3M_{\odot})^{1/3}$ ,  $R_{J}$  расстояние Юпитера от Солнца,  $M_{J}$  и  $M_{\odot}$  - массы Юпитера и Солнца. Часть падающего вещества должна образовывать диск вокруг Юпитера. Его радиус  $r_d$ , оцениваемый путем приравнивания центробежной и гравитационной сил, составляет  $r_d \approx r_H/48$ , то есть около  $20r_J$ , где  $r_J$  - современный радиус Юпитера. Образование Галилеевых спутников в юпитерианском диске с определенностью следует из их регулярно расположенных круговых орбит, лежащих в экваториальной плоскости Юпитера, и из совпадения направления их орбитального движения с направлением вращения Юпитера. Из наблюдений получено, что протопланетные диски вокруг молодых звезд солнечного типа с возрастами  $\leq 10^6$ - $10^7$  лет являются аккреционными дисками, то есть, радиальный поток массы через диск M падает на звезду (Беквиз и Саржент, 1996). Сходство регулярной спутниковой системой Юпитера с такими же системами у других планет-гигантов и солнечной планетной системой является сильным аргументом в пользу аккреционной модели протоспутникового диска вокруг Юпитера. В этой модели вещество лиска получается непосредственно из вещества солнечной туманности, поступающего в сферу Хилла вокруг Юпитера. Турбулентная вязкость приводит к перераспределению вещества диска таким образом, что большая часть его движется к Юпитеру, а меньшая часть, в соответствии с законом сохранения углового момента, движется в сторону от Юпитера и увеличивает радиус диска. Наши оценки показывают, что он вполне может достичь 30-40 г. Регулярные спутники могли образоваться только на поздней стадии аккреции (Harris, 1978).

**Модель**. Ранее мы разработали и рассчитали модель протопланетного аккреционного диска вокруг молодого Солнца (Макалкин, Дорофеева, 1995, 1996). Теперь мы обобщаем эту модель, чтобы рассчитать основные физические параметры протоспутникового диска вокруг Юпитера (юпитерианской субнебулы). Мы принимаем α-параметризацию величины ν,

турбулентной вязкости диска:  $v = \alpha \, c_s \, h$ . Здесь  $c_s$  -скорость звука в экваториальной плоскости, h - высота однородной атмосферы по давлению, равная  $c_s/\Omega$ , где  $\Omega = (GM_s/r^3)^{1/2}$  - угловая скорость на планетоцентрическом расстоянии r. В уравнения переноса углового момента и вязкой диссипации энергии внесены изменения для того, чтобы учесть гораздо более высокое отношение радиуса Юпитера к радиусам спутниковых орбит по сравнению с отношением радиуса Солнца к радиусам планетных орбит. В рассмотрение включены два источника нагрева диска: вязкая диссипация внутри диска и облучение диска молодым Юпитером и Солнцем. Относительный вклад облучения диска в его нагрев может быть для юпитерианского диска намного больше, чем для солнечного. При расчете облучения мы учитываем высоту и кривизну оптической поверхности диска. При расчете вертикальной структуры диска мы используем уравнения гидростатического равновесия и переноса тепла. Поскольку перенос тепла в диске с помощью излучения в 7-10 раз больше, чем с помощью турбулентности (Макалкин, Дорофеева, 1995), распределение температуры определяется непрозрачностью вещества диска. Мы аппроксимируем зависимость непрозрачности от температуры кусочно-непрерывной степенной функцией  $\kappa = \kappa_0 T^\beta$  с различными  $\kappa_0$  и  $\beta$  в трех температурных диапазонах: ниже температуры конденсации воды  $T_w$ , где в формировании непрозрачности доминируют частицы льда; между  $T_w$  и наибольшей из температур

конденсации форстерита, энстатита, и металлического железа  $T_{si}$  где доминируют частицы Mg-силикатов и железа; наконец, выше  $T_{si}$ , где доминирует молекулярный водород.

Основными варьируемыми входными параметрами нашей модели являются поток массы через диск на Юпитер M (скорость аккреции) и параметр вязкости  $\alpha$ . Для минимального значения потока массы M можно дать оценку  $M \sim M_d/t_a$ , где  $M_d$  - минимальная масса диска, необходимая для образования Галилеевых спутников. Она равна полной массе спутников  $M_s$ , деленной на массовую долю сконденсированного вещества  $f_c$ . В юпитерианской зоне солнечной туманности  $H_2O$  находилась в твердом состоянии, а C и N в основном входили в состав газа. В этом случае для солнечной пропорции элементов  $f_c \approx 0.01$ . Таким образом мы получаем оценку M для диска на основной аккреционной стадии:  $M=10^{14}-10^{15} \mathrm{г/c}$ . Еще два входных параметра - светимость и радиус молодого Юпитера  $L_{yJ}$  и  $r_{yJ}$ . Для поздней стадии аккреции, подходящей для образования спутников, оценки Сафронова и Рускол (1982) дают  $L_{yJ} \approx 1000$   $L_{J}$  аnd  $r_{yJ} \approx 1.4$   $r_{J}$ , где  $L_{J}$  - современная светимость Юпитера. Эти величины соответствуют моменту времени  $t=10^{7}$  лет, когда 80% от полной массы было аккумулировано планетой.

**Результаты.** Были рассчитаны две модели диска. В модели I распределение температуры в диске мы приводим в соответствие с содержанием воды в Галилеевых спутниках. Чтобы добиться этого, мы варьируем вязкость диска так, чтобы температура в экваториальной плоскости диска оказалась равной температуре испарения водяного льда вблизи (но не дальше) орбиты Ганимеда. Поскольку температура в экваториальной плоскости выше, чем вне ее, некоторая доля льда сохраняется в диске до меньших радиальных расстояний вплоть до орбиты Европы. Чтобы получить такую модель, вязкость должна быть умеренно высокой:  $\alpha \approx 10^{-3}$ . Радиальная скорость течения газа и пыли внутрь диска на расстоянии Европы равна  $v_r \approx v/r \approx 7$  см с<sup>-1</sup>. Температуры и давления для модели I показаны на Рис.1 кривыми, обозначенными I. В этой модели вещество нагревается и фракционно испаряется по мере его дрейфа в сторону Юпитера. Давление в диске оказывается довольно низким, как и полная масса диска. В любой момент полная масса твердого вещества  $M_s$  составляет  $\sim 10^{-3}$  от полной массы Галилеевых спутников  $M_G$ . Но величина потока массы M позволяет аккумулировать необходимую массу твердого вещества в спутниках за время жизни диска, если большинство твердых частиц и тел, хотя и движутся в сторону Юпитера вместе с газом, но не покидают диска благодаря высокой эффективности их захвата растущими зародышами спутников.

Альтернативная модель 2 - массивный диск с  $M_s \approx M_G$ . Масса диска составляет  $M_d \approx M_s/f_c \approx 6 \times 10^{28}$  г. Столь большая масса может быть достигнута на поздней стадии аккреции Юпитера, если принять, что вязкость диска в  $10^4$  раз ниже ( $\alpha \approx 10^{-7}$ ), чем в модели I. Благодаря малой вязкости поток массы из диска на Юпитер оказывается меньше, чем приток массы в диск, поэтому масса диска нарастает. Как показывают расчеты P-T условий для этой модели (Puc.1, кривые 2), температура во внутренней области диска r<17  $r_J$  равна температуре конденсации металлического железа, и она везде выше температуры конденсации воды. Для охлаждения диска и образования спутников в диске должно произойти затухание двух взаимосвязанных процессов: аккреции на Юпитер и вязкой диссипации. Еще одно условие для образования спутников - более высокие скорости процессов охлаждения диска и образования планетезималей по сравнению со скоростью диссипации газа из диска. Ввиду более высоких давлений в этой модели диска, конденсация происходит через жидкое состояние. Еще предстоит исследовать, какая из этих двух моделей является более перспективной для объяснения образования спутников.

## Литература

Beckwh, S.V.W., and Surgent, A.I. 1996. Circumstellar disks and the search for neighbouring planetary systems. Nature 383, 139-144.

Harris, A.W. Satelle formation. II. 1978. Icarus 34, 128-145.

Makalkin, A.B., and Dorofeeva, V.A. 1995. Structure of the protoplanetary accretion disk around the Sun in the T Tauri phase: I. Inial data, equations, and methods of modeling. Solar System Res. 29, 85-104.

Makalkin, A.B., and Dorofeeva, V.A. 1996. The structure of the protoplanetary accretion disk around the sun at the T Tauri stage. II. Results of model calculations Solar System Res. 30, 440-455.

Pollack, J.B., Hubickyi, O., Bodenheimer, P., Lissauer, J.J., Podolack, M., and Greenzweig, Y. 1996.

Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62-85.

Ruskol, E.L. 1982. Origin of planetary satelles. Izvestiya Earth Phys. 18, 425-433.

Ruskol, E.L., and Safronov, V.S. 1998. Juper growth as an essential factor for the formation of the planetary system. Solar System Res. 32, 255-263.

Safronov, V.S., and Ruskol, E.L. 1982. On the origin and inial temperature of Juper and Saturn. Icarus 49, 284-286.

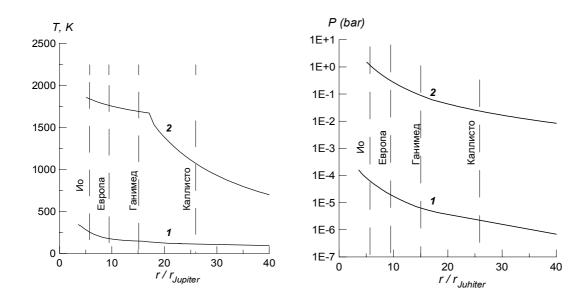



Рис. 1. Температуры и давления в экваториальной плоскости юпитерианского протоспутникового диска для моделей  $\it I$  и  $\it 2$  (см. текст). Отмечены радиусы орбит  $\it \Gamma$ алилеевых спутников.