ИССЛЕДОВАНИЕ ТРАВЛЕНИЯ АЛМАЗОВ В МАНТИЙНЫХ ПОРОДАХ – КСЕНОЛИТАХ ИЗ КИМБЕРЛИТОВ

Е.И.Жимулев

Конструкторско-технологический институт монокристаллов СО РАН, Новосибирск

Вестник ОГГГГН РАН № 5 (15)'2000 т.1

URL: http://www.scgis.ru/russian/cp1251/h dgggms/5-2000/magm9

Растворение природных алмазов в кимберлитовой магме - один из наиболее дискуссионных вопросов в настоящее время. Еще более неопределенным моментом в генезисе алмазов является возможность растворения в мантийных породах, считающихся средой их кристаллизации. Исследование внутренней морфологии кристаллов алмаза часто свидетельствует о сложной эволюции кристаллов, включающей стадии растворения.

Настоящая работа посвящена определению возможности травления алмазов в присутствии природных силикатных минералов из глубинных ксенолитов из кимберлитов. Эксперименты про-

водили на многопуансонном аппарате высокого давления типа "разрезная сфера" по методике [1]. Использовали плоскогранные и острореберные природные октаэдрические и синтетические кубооктаэдрические кристаллы алмаза. В качестве силикатной шихты применяли составы из природных парагенезисов, отвечающих дуниту, гранатовому лерцолиту, шпинелевому лерцолиту, гранатовому пироксениту, эклогиту. Опыты проведены в герметизированных платиновых ампулах при 5.5-6.0 ГПа, 1450-1500°C, длительностью 1 час.

Условия и результаты экспериментов

Номер	Образец	Состав	Вес, мг (%)	Алмазы	Исходный	Конечный	Фигуры
опыта				(кол-во)	вес, мг	вес, мг	травления
4-36-97	дунит	Ol	108.6 (93)	1	0.57	0.57	нет
		Ga	8.2 (7)	природн.			
7-28-98	эклогит	Cpx	67.7 (60)	1	0.57	0.53	есть
		Ga	45.1 (40)	природн.			
7-9-99	щпинелевый	Ol	95.0 (95)	1	1.27	1.27	нет
	лерцолит	Opx	3.0 (3)	природн.			
		Sp	2.0(2)				
7-14-99	гранатовый	Ga	73.45 (83)	2	1.57	1.57	нет
	пироксенит	Cpx	15.0 (17)	синтетич.			
8-25-99	гранатовый	Ol	80.37 (82.7)	2	1.43	1.39	есть
	лерцолит	Opx	6.9 (7.1)	синтетич.			
		Ga	9.95 (10.2)				
8-30-99	эклогит	Ga	51.5 (50.7)	2	1.54	1.49	есть
		Cpx	50.0 (49.3)	синтетич.			
8-37-99	шпинелевый	Ol	86.40 (81.3)	2	1.48	1.48	есть
	лерцолит	Opx	15.15 (14.3)	синтетич.			
		Sp	4.7 (4.4)				

В экспериментах с дунитом, гранатовым пироксенитом изменения веса и морфологии кристаллов не установлено. С остальными составами имело место незначительное изменение морфологии и веса кристаллов. В опытах с шпинелевым лерцолитом изменения коснулись только микроморфологии граней, а потеря веса кристаллов не зафиксирована. С гранатовым лерцолитом алмазы потеряли 0.04 мг (2.8 %). Наиболее значительные потери веса кристаллов зафиксированы в опытах с эклогитом: 7 и 3.2 %; причем 7 % потери веса относится к опыту с большим содержанием пироксена относительно граната. Образовавшиеся фигуры травления являются аналогичными известным на природных кристаллах и воспроизведенным раннее при травлении алмазов в силикатных расплавах при Р-Т параметрах, соответст-

вующих области термодинамической стабильности графита [1]. На гранях {111} наиболее характерны треугольные ямки травления, обратно ориентированные относительно контуров граней, (отрицательные тригоны). Имели место как плоскодонные, так и пирамидальные ямки травления, размером 0.01-0.08 мм. Вблизи ребер между октаэдрическими гранями появились слои травления в виде параллельной штриховки. Вблизи ребер между октаэдрическими и кубическими гранями слои травления имели "зубчатые" контуры ("лесенковидный узор"). Входящий угол между отдельными "зубцами" равен 60°. Торцы слоев, как и боковые стенки ямок травления, сложены поверхностями по положению соответствующими тригон-триоктаэдру. Грани {100} травились исключительно посредством образования ямок травления с прямоугольными контурами, параллельными ребрам между октаэдрическими и кубическими гранями. Кроме того, в опыте № 8-37-99 проявились необычные фигуры травления плоские, различных размеров, в основном, прямоугольных очертаний, являющиеся положительными формами рельефа, кристаллографически неориентированные. Возможно, они являются по сути отпечатками силикатных фаз при травлении.

Поскольку в опытах не было достигнуто плавления силикатных образцов можно сделать вывод, что травление алмазов происходило за

счет естественного содержания летучих в силикатных минералах. Проведенное исследование свидетельствует, с одной стороны, о принципиальной возможности травления алмазов при параметрах термодинамической стабильности и, с другой стороны, о близком к равновесному алмазу составе флюида, законсервированного в мантийных минералах.

1. Чепуров А.И., Федоров И.И., Сонин В.М. Экспериментальное моделирование процессов алмазообразования. Новосибирск: Изд-во НИЦ ОИГГМ СО РАН, 1997. 196с.