Литература:

- 1. California Geological Survey Special Report 207. U.S. Geological Survey, Reston, Virginia, 2008.
- 2. Frolich, C., K.D. Apperson Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics, 1992. Vol. 11, N 2. P. 279-296.
- 3. Michael Collier. A Land on Motion California's San Andreas Fault. Golden Gate National Parks Conservancy. University of California Press, 1999.
- 4. The ShakeOut Scenario. USGS Open File Report 2008-1150. CGS Preliminary Report 25. Version 1.0. U.S. Geological Survey, Reston, Virginia, 2008
- 5. Wallace Robert E. The San Andreas Fault System, California. United States Government Printing Office, Washington, 1990.
- 6. http://www.globalcmt.org/CMTsearch.html (каталог СМТ)
- 7. http://www.consrv.ca.gov/cgs/information/publications/Pages/QuaternaryFaults_ver2/aspx
- 8. http://www-wsm.physik.uni-karlsruhe.de/index.html

НЕФТЕГАЗОМАТЕРИНСКИЕ СВИТЫ ОРЕНБУРГСКОЙ ОБЛАСТИ

Малых Марина Васильевна

Геологический ф-т МГУ, Москва, malykhmarina@gmail.com

Территория Оренбургской области является составной частью Волго-Уральского и Прикаспийского нефтегазоносных бассейнов (НГБ). Она границе с крупными нефтедобывающими районами: Башкирией, Татарией, Самарской обастью и Казахстаном. По условиям залегания осадочного чехла на территории Оренбургской области выделяются следующие тектонические структуры: Бузулукская впадина, Предуральский краевой прогиб, Прикаспийская синеклиза, Восточно-Оренбургское валообразное поднятие, Соль-Илецкий свод и южный склон Южно-Татарского Оренбургской осадочном разрезе области верхнепротерозойские, палеозойские и мезозойские осадочные образования, подстилают их метаморфические и магматические породы кристаллического фундамента архейско-раннепротерозойского возраста [2].

Для прогнозирования фазового состава УВ в недрах необходимо учитывать показатели органической геохимии: фациальные разновидности органического вещества (ОВ), его содержание в породах и особенности стадиального (катагенетического) преобразования. Именно эти параметры позволяют выделить в осадочном разрезе нефтегазоматеринские (НГМ) породы и оценить их генерационный потенциал. Под генерационным потенциалом понимается способность пород генерировать жидкие и газовые углеводороды. Разные типы ОВ обладают различными генерационными потенциалами.

Определение нефтематеринского потенциала ОВ проводится различными методами, но в последние годы чаще всего применяется пиролитический метод Rock-Eval, разработанный Дж.Эспиталье. Для выделения типов керогенов (нерастворимая в водных растворах щелочей и в органических растворителях часть ОВ) используют диаграмму ван Кревелена (зависимость HI-OI по данным пиролиза). Наиболее высокой генерационной способностью обладает кероген I типа (сапропелевый), меньшей — II тип (смешанный состав) и III тип (гумусовый). Реализация ОВ происходит в катагенезе, однако современные значения его характеризуют остаточный потенциал НГМ породы, который меньше его начального потенциала вследствие генерации УВ [1].

Для выделения $H\Gamma M$ свит используется комплексное изучение, позволяющее оценить фациальные обстановки накопления толщ, генетический типа захороненного ОВ, максимальные глубины погружения изучаемых толщ, термобарический режим, степень катагенетической преобразованности ОВ, закономерности распределения органического углерода (Сорг) и битумоидов по площади и разрезу [4]. Для идентификации фациально-генетического типа ОВ использовались данные о петрографическом составе ОВ, его морфологии, а результаты компонентного, элементного анализа, инфракрасной спектроскопии и газожидкостной хроматографии синбитумоидов [3]; а также данные пиролиза Rock-Eval.

Геохимические исследования проводились по разрезам скважин из разных частей исследуемого региона (рис.1). По полученным данным была построена 1- D модель в программе Genesis.

Рис.1. Обзорная схема работ.

Проведенные исследования позволили выделить следующие нефтематеринские комплексы (HM) в осадочном разрезе Оренбургской области (табл.).

Tr ~			1		_	. ~	<i></i>
Гаолина	Основные ха	пактепистики	и нефтегазома	тепинских (свит ()	neunvnrc	кои области
т иолици.	Ochobilbic Au	paricpherman	i iicqiici asoma	1 CPHILLORIA V	овит О	pendypre	non oonacin.

		Глубина	Сорг	ні	OI	PI	Tmax	S ₁ +S ₂	b ^{S1} ,%
Возраст	Породы		сред. знач						
D2ef	аргиллиты, известняки, сланцы	5083	1,64	101	43	0,37	467	2,38	6,8
D2zv	известняки, аргиллиты	4454	0,94	132	54	0,32	449	1,76	6,3
D3fr	аргиллиты, мергели, известняки	4298	4,04	159	59	0,3	444	2,7	6,3
D3fm	известняки, мергели	5083	0,75	189	59	0,5	443	0,8	14
C1	известняки,доломиты	3526	5	179	45	0,3	432	12	7
C2	алевролиты,известняки	2841	1,2	100	86	0,3	443	2,3	4,8
P1	известняки, доломиты	5735	1,7	157	464	0,5	433	4,12	17

Наиболее высокопотенциальными нефтегазоматеринскими породами в осадочном разрезе Оренбургской области являются девонские породы и нижнекаменноугольные. Остановимся на рассмотрении основных геохимических показателей этих отложений.

D2: По содержанию Сорг (1-2 %) карбонатно-терригенные породы обладают хорошим нефтематеринским потенциалом по классификации [5] (рис.2). По диаграмме ван Кревелена ОВ относится к ІІІ типу, но встречается и ОВ ІІ типа (рис.3) . Образцы, в основном, высокопреобразованные, уровень термической зрелости МК1-МК5 (рис.4).

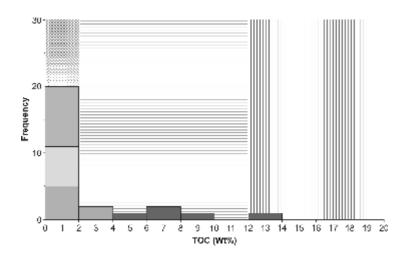


Рис.2 Содержание Сорг в породах среднего девона.

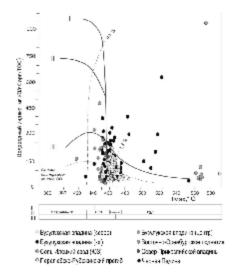
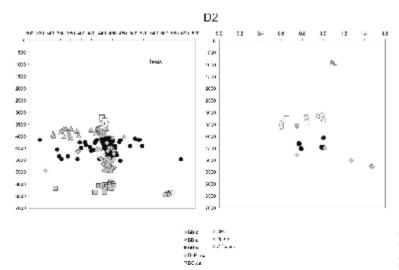
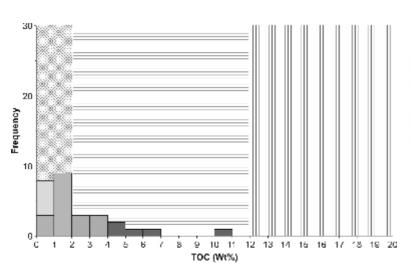


Рис.3 Диаграмма ван Кревелена для пород среднего девона.




Рис.4 Изменение Tmax и Ro с глубиной.

Изученные нефтематеринские породы среднего девона принадлежат к типичным доманикитам - высокопотенциальным НМ породам [1]. Примером таких пород является мощная толща относительно глубоководных отложений, вскрытых на Карачаганакской площади. В глинисто-карбонатной толще эйфельско-живетского возраста на протяжении более трехсот метров отмечены концентрации Сорг 5-10 % и величины генерационного потенциала 5-24 кг УВ/т породы.

С1: По содержанию Сорг (1-3 %) отложения нижнего карбона, как и нижележащие породы девона, обладают хорошим генетическим потенциалом (рис.5) и по этому критерию они также относятся к доманикитам. Породы содержат в основном, кероген III типа (рис. 6). По данным пиролиза они ГЗН ($Tmax = 430-455^{\circ}$) (рис.7).

Таким образом, к основным нефтематеринским свитам в подсолевом разрезе Оренбургской области, можно отнести карбонатно-терригенные породы среднего девона и нижнего карбона - они обладают повышенными концентрациями OB («доманикиты») морского генезиса. По химическому составу исходное ОВ подразделяется на два типа. Первый, нефтематеринский, преимущественно жидкие УВ. Второй – смешанный, сапропелевое с той или иной примесью гумусового материала; такой кероген генерирует наряду с жидкими в основном газовые УВ. Оба типа ОВ присутствуют как в породах девона, так и в разрезе карбона. Однако в первом случае, такой состав OB (кероген III типа) является следствием более высокого катагенетического преобразования пород девона, что хорошо видно на рис.3 – все образцы тяготеют к концу ГЗН – началу главной зоны газообразования (рис.3). В отложениях карбона, менее преобразованных, разнообразие типов ОВ является следствием различных фациальных условий.

Работа выполнена под руководством ст.н.с. Фадеевой Н.П. и н.с. Полудеткиной Е.Н.

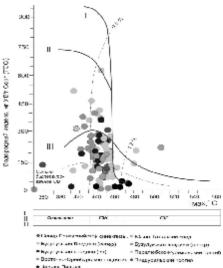


Рис.5. Содержание Сорг в породах нижнего карбона.

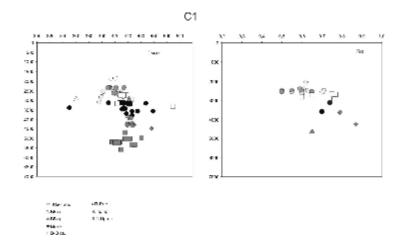


Рис.6 Диаграмма ван Кревелена для пород нижнего карбона.

Рис.7. Изменение Tmax и Ro с глубиной.

Литература:

- 1. Баженова О.К., Бурлин Ю.К., Соколов Б.А., Хаин В.Е. Геология и геохимия нефти и газа. М.Издательство Московского университета, 2000.
- 2. Пантелеев А.С. Геологическое строение и нефтегазоносность Оренбургской области. Оренбургское книжное издаетельство, 1997
- 3. Ляпустина И.Н., Острая В. В. Геохимические исследования органического вещества и битумов палеозойских отложений юга Оренбургской области в связи с оценкой перспектив нефтегазоносности. Оренбург, 2001.
- 4. Хант Дж. Геохимия и геология нефти и газа. Москва, «Мир», 1982.
- 5. Magoon I.B., Dow W.G. The petroleum system from source to trap: AAPG Memoir 60, 1994.