Кианит в ассоциации с гранатом, ставролитом и андалузитом являются индикаторами высоко метаморфизованного источника сноса материала. Большинство пироксенов, также как циркон и сфен, являются показателями магматического источника, хотя циркон и сфен также могут встречаться и в метаморфических породах. Таким образом, согласно минералогическому анализу главный источник сноса является смешанным: метаморфическим и, частично, магматическим.

Литература:

1. Vorren, T.O., Laberg, J.S, Blaume, F., Dowdeswell, J.A., Kenyon, N., Mienert, J., Rumohr, J. & Werner, F. The Norwegian-Greenland Sea continental margins: Morphology and Late Quaternary sedimentary processes and environment. Quaternary Science Reviews, Vol.17, pp. 273-302, 1998.

МОРФОЛОГИЯ КЛАСТОГЕННОГО КВАРЦА ИЗ ДОКЕМБРИЙСКИХ БАЗАЛЬНЫХ ТОЛЩ БАШКИРСКОГО МЕГАНТИКЛИНОРИЯ

Ялышева Александра Ивановна

Институт геологии и геохимии УрО РАН, Екатеринбург, Yalysheva@igg.uran.ru

Показатели морфологии кластогенного кварца ΜΟΓΥΤ являться литологически признаками получения значимыми ДЛЯ комплексной докембрийских базальных характеристики толщ «немых» Башкирского мегантиклинория.

Такие показатели морфологии, как сферичность и изометричность могут отражать не только условия седиментации для кварцевого компонента, но и указывать на состав петрофонда питающих провинций, который обуславливает петрогенную или литогенную природу кластогенного кварца в осадочной породе [1-3, 6-8].

Материалом исследования являются выборки зерен кварца в шлифах под микроскопом из терригенных пород базальных рифейских (R) и вендских (V) толщ Башкирского мегантиклинория (таблица 1). Все зерна кварца преимущественно одной размерности -0.25-0.5 мм.

Сферичность определялась по методу Лапинской Т.А. [5]. Изометричность принималась как отношение длины наименьшего сечения зерна к наибольшему. Кроме того, изучалась окатанность зерен, приведенная в баллах.

Для полученных данных были рассчитаны статистические показатели среднего арифметического (Хср), стандартного отклонения (σ), медианы (Md) и моды (Мо) и построены гистограммы, отражающие интервалы встречаемости разновидностей зерен кварца (рис).

Ранее было выявлено, форма зерен петрогенного кварца имеет низкие статистические показатели сферичности и изометричности, Преобладающие интервалы встречаемости разновидностей зерен кварца для сферичности 0,4-0,6 и для изометричности 0,6-0,8. Морфология зерен кварца первого цикла седиментации имеет близкие к петрогенному статистические и интервальные значения этих показателей (таблица 2). Это показывает, что формы зерен кварца петрогенного и первого цикла обладают низкой сферичностью и анизометричностью [1-3, 6-8].

Значения формы зерен литогенного кварца, напротив, имеют высокие статистические и интервальные значения морфологии (таблица 2). Они характеризуют его форму как обладающей большей округлостью и изометричностью. Причиной этого может быть неоднократное переотложение и, как следствие, интенсивное преобразование формы кластогенного кварца [1-3, 6-8].

Проведенное исследование статистических и интервальных показателей морфологии выборок зерен кластогенного кварца из базальных толщ Башкирского мегантиклинория (рис., таблица 3) показывают его существенную литогенную принадлежность в рифейских и петрогенную – в вендских толщах. При этом значения окатанности, как показано на графиках не всегда совпадают со значениями сферичности (рис. 4в, 5в). Это может объясняться тем, что сферичность зерен одинаковая, а по окатанности выборка зерен попала из 2-х генеральных совокупностей.

Данные показатели могут свидетельствовать, что в рифейском время существовал единый петрофонд питающей провинции, состав которого изменился в вендское время. В рифейское время в осадочный бассейн поступал преимущественно литогенный кварц, а в вендское – существенно петрогенный.

Полученные данные, за некоторым исключением, согласуются с предположением, что источниками рифейского литогенного кварца являлись нижнепротерозойские осадочные и метаморфические литологические комплексы Восточно-Европейской платформы [2,4].

Таблица 1. Базальные свиты рифейского и вендского возраста Башкирского мегантиклинория.

№	Свита/подсвита	Возра ст	Кол-во зерен	Порода	Привязка
1.	Куккараукская	V_2	52	Лититовые песчаники	Стерлитамакский тракт
2.	Басинская	V_2	192	Песчаники	Стерлитамакский тракт
3.	Урюкская	V_2	192	Аркозовыепе счаники	Аралбаево
4.	Зильмердакская/би рьянская и бедерышинская	R_3	477	Аркозовые песчаники	Верхний Авзян, Малый Инзер, ручей Бирьян
5.	Зигальгинская	R ₂	266	Мономиктов ые кварцевые песчаники	Иркусканский, Новобакальский, Александровский, Петлинский и Буландихинский карьеры, Айгир
6.	Айская/ навышская, липовская и кисеганская	R_1	212	Лититовые и аркозовые песчаники	Аршинский разрез, Малый Миасс, Липовые горы, Кисеганка

Таблица 2. Интегральные показатели морфологических значений генетических типов кварца из кристаллических и терригенных пород Урала [1-3, 6-8].

№	Тип кварца	Породы	Сферичность		Изометричность	
			Xcp±σ	Md	Xcp±σ	Md
1.	Петрогенный	Магматические	0,501±0,133	0,492	0,665±0,177	0,7
		и метаморфически	1601		1601	
		e				
2.	Первого цикла	Терригенные	0,543±0,119	0,551	0,662±0,162	0,68
	седиментации	осадочные	300		300	
3.	Литогенный	Терригенные	0,654±0,141	0,646	0,734±0,146	0,762
		осадочные	705		705	

В числителе: Xcp – среднее арифметическое, σ – стандартное отклонение; в знаменателе: вес выборки (количество зерен); Md – медиана выборки

Таблица 3. Статистические показатели морфологии зерен кластогенного кварца базальных докембрийских свит Башкирского мегантиклинория.

No	Свита/порода	Сферичность		Изометричность		Окатан
						ность
		Xcp±σ	Md	Xcp±σ	Md	Mo
1.	Куккараукская/	0,601±0,125	0,584	0,731±0,155	0,72	4
	песчаник	52		52		
2.	Басинская/	0,566±0,144	0,572	0,691±0,155	0,699	4
	песчаник	192		192		
3.	Урюксая/	0,58±0,147	0,577	0,652±0,155	0,636	5
	песчаник	192		192		
4.	Зильмердакская/ песчаник	0,61±0,143	0,61	0,7±0,155	0,61	5
		477		477		
5.	Зигальгинская/	0,633±0,136	0,647	0,703±0,155	0,728	5
	песчаник	266		266		
6.	Айская/	0,657±0,143	0,619	0,657±0,155	0,667	5
	песчаник	212		212		

В числителе: Xcp – среднее арифметическое, σ – стандартное отклонение; в знаменателе: вес выборки (количество зерен); Md – медиана выборки; Mo – мода выборки.

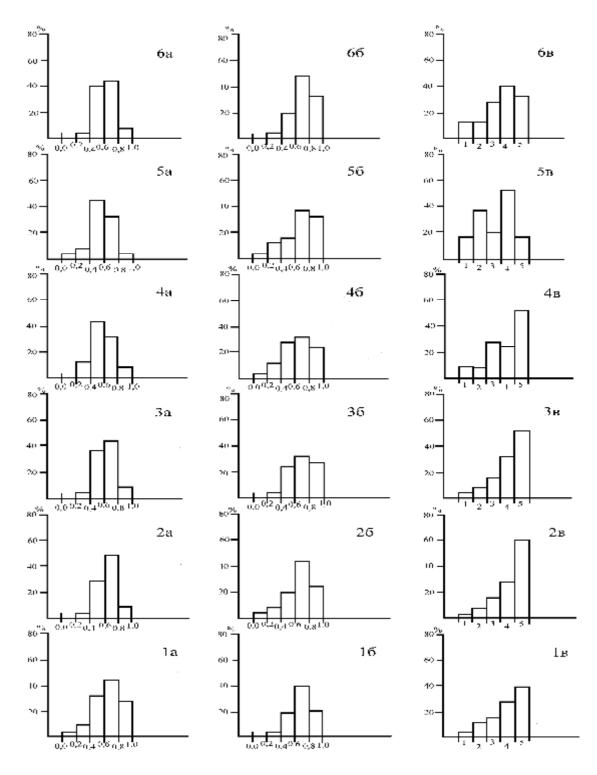


Рис. 1-6. Графики распределения морфологии зерен кластогенного кварца базальных докембрийских свит Башкирского мегантиклинория.

Индекс: а – сферичность, б – изометричность, в – окатанность.

Свиты: 1 – айская, 2 – зигальгинская, 3 – зильмердакская, 4 – урюкская, 5 – басинская, 6 – куккараукская.

Литература:

1. Анфимов Л. В. Сферичность зерен кластогенного кварца из песчаников как индикатор природы источников при формировании осадков этих пород в

- геологическом прошлом // Минералогия Урала 2007: Сб. науч. статей. Миасс-Екатеринбург: Ин-т. минералогии УрО РАН, Ильмен. гос. запов., 2007. С. 298-300.
- 2. Анфимов Л.В. Литогенез в рифейских осадочных толщах Башкирского мегантиклинория. Екатеринбург: ИГГ УрО РАН, 1997, 288с.
- 3. Анфимов Л.В., Сравнительное исследование сферичности кварцевых зерен кристаллических пород и песчаников // Ежегодник 2004 ИГГ. Екатеринбург: ИГГ УрО РАН, 2005. С.50 52.
- 4. Маслов А.В., Гареев Э.З., Крупенин М.Т. Терригенные осадочные последовательности типового разреза рифея: соотношение процессов рециклинга и привноса "first cycle" материала // Геохимия, №2, 2005, С.144-181
- 5. Лапинская Т.А. К вопросу о количественной характеристике формы зерен обломочных минералов / Советская геология, №18, 1947. С. 156-163.
- 6. Ялышева А.И. Рециклированный кластогенный кварц из вендских толщ Кваркушско-Каменогорского мегантиклинория /Научные чтения памяти П.Н. Чирвинского, Пермь: ПГУ, 2008. С.98-101
- 7. Ялышева А.И. Морфологические и типоморфные признаки кластогенного кварца как его генетические критерии /Матер.Всер.науч.конф. «Уральская минералогическая школа-2007». Екатеринбург: ИГГ УрО РАН, 2007, С. 224-227.
- 8. Ялышева А.И. Использование статистического анализа для установления генезиса кластогенного кварца // Материалы 5-го Всерос. литолог. совещания «Типы седиментогенеза и литогенеза и их эволюция в истории Земли». Екатеринбург: ИГГ УрО РАН, Том II, 2008. С.464-468.