аморфного вещества и, таким образом, о существенном влиянии коллоидной составляющей на свойства песков.

Различия в дисперсности нижнемеловых песков, выражающиеся в преобладании мелко- или тонкопесчаной фракции, а также разном содержании глинистых и, особенно, коллоидных частиц обусловливают и различия в свойствах, поведении при нагрузках. Это свидетельствует о необходимости более детального изучения нижнемеловой толщи при инженерно-геологических изучения типизации ee строения и свойств литологических типов пород для решения одного из наиболее насущных вопросов практики: на сколько существенны вариации показателей физических и физико-механических свойств в пределах выделяемых литологических типов пород нижнемеловой толщи на территории г. Москвы. Особое внимание следует уделить составу тонкодисперсной составляющей песков как одному из основных факторов, влияющих на разжижаемость пород, осложняющей строительство.

ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ГЛИНИСТЫХ ГРУНТОВ В ДИАПАЗОНЕ МАЛЫХ ДЕФОРМАЦИЙ

Заец Александра Анатольевна

Геологического ф-т МГУ имени М.В. Ломоносова, Москва, <u>AlexZaets@yandex.ru</u>

Работа посвящена определению динамических характеристик глинистых грунтов основания проектируемого завода по производству ядерного топлива в Томской области с целью установления закономерностей поглощения волн напряжений в грунтах, разных по составу, состоянию и свойствам, зависимостей параметров поглощения колебаний от частоты волны, выяснения зависимостей характеристик от условий залегания грунтов и значений приложенных нагрузок.

Определение динамических характеристик грунтов – модуля сдвига и коэффициента поглощения - велось методом малоамплитудных динамических испытаний, соответствующих упругому и отчасти упругопластическому деформированию грунта, на резонансной колонке TSH-100 производства Geotechnical Consulting & Testing Systems (США). Метод основан на теории распространения сдвиговых колебаний в упругом стержне. При такой методике в грунте как в стержне возникают крутильные колебания, уравнение которых

выглядит следующим образом: $\frac{\partial^2 q}{\partial z^2} = \frac{1}{V_s^2} \frac{\partial^2 q}{\partial t^2}$. Решением уравнения является

следующее выражение:
$$q(z,t) = \left[A\sin\left(\frac{w}{V_s}z\right) + B\cos\left(\frac{w}{V_s}z\right)\right] * e^{iwt}$$
, где A и B -

константы. С учетом всех граничных условий, получаем равенство:

$$\frac{I}{I_0} = \frac{wh}{V_s} \tan\left(\frac{wh}{V_s}\right)$$
, из которого рассчитывается скорость поперечных волн, а затем

модуль сдвига по соотношению: $G=rV_s^2$, где r - объемный вес грунта. Коэффициент поглощения волн в грунте выводится из уравнения затухания свободных колебаний: $\frac{A_n}{A_{n+1}}=e^{\frac{2pD}{\sqrt{1-D^2}}}$, где D - коэффициент поглощения.

В работе были исследованы: суглинки серые озерно-аллювиального происхождения среднечетвертичных отложений тайгинской свиты (глубина отбора - 12,5-12,7 м); глины светло-серые морского происхождения плиоценнижнечетвертичных отложений кочковской свиты (35,0-35,2 м); алевриты темно-серые олигоценовых отложений новомихайловской свиты (89,2-89,4 м). По минеральному составу все грунты в основном сложены кварцем, микроклином, плагиоклазом, хлоритом, каолинитом, иллитом, смектитом и смешанослойными минералами. По гранулометрическому анализу самыми дисперсными являются плиоцен-нижнечетвертичные глины, отмечено также высокое значение гигроскопической влажности этого грунта. Содержание органического углерода во всех грунтах довольно высокое и составляет 4-5 %. Самыми пористыми и влажными грунтами являются олигоценовые алевриты, несмотря на то, что они отобраны с глубины 89 м.

По данным 42 испытаний при разных уровнях последовательно приложенных усилий до деформаций не более 0,1 % построены амплитудночастотные зависимости (рис. 1), из которых видно, что от изменения деформации выраженность резонансных пиков различна.

И в массиве, и в образце грунт представляет собой сложную колебательную систему, характеризирующуюся массой, модулем сдвига, как мерой жесткости, и коэффициентом поглощения, как мерой затухания.

Сначала - при малых деформациях до 0,001% - пики не отчетливы из-за существующих в колебательной системе помех. При некотором «пороговом» моменте, при сдвиговых деформациях в первые тысячные доли процентов пики уже четкие. В дальнейшем резонансный пик становится все более отчетливым, а резонансная частота при этом постепенно снижается, что приводит к снижению жесткости, с одной стороны, и повышению поглощения, с другой. Это объясняется постепенной деградацией структурных связей, вследствие чего накапливаются микропластические деформации в грунте.

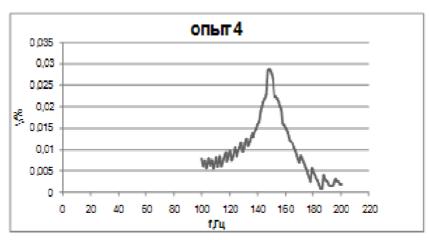


Рис. 1. Резонансная кривая вынужденных колебаний образца суглинков легких пылеватых ($laQ_{II}tg$).

Полученные кривые зависимости модуля сдвига от деформации сдвига (рис.2) по результатам испытаний при природной и дополнительной нагрузке несколько условно можно разбить на 3 участка:

- 1) участок практически постоянной жесткости грунта, в пределах которого происходит упругое деформирование материала;
- 2) участок прогрессирующего снижения жесткости, означающий накопление микропластических деформаций и разрушение некоторого количества наиболее жестких структурных связей;
- 3) участок незначительных изменений модуля сдвига, который остается на своем минимальном уровне при более высоких деформациях.

Совместный анализ результатов при природных и дополнительных нагрузках для грунтов показал, что:

- 1) абсолютные значения модуля сдвига существенно больше у плиоценнижнечетвертичных глин, что объяснимо, по-видимому, самой высокой дисперсностью грунта, обуславливающей большую суммарную площадь контактов между частицами. Стоит также отметить, что кривая зависимости имеет ступенчатый характер. По-видимому, грунт имеет смешанный тип структуры. Разные группы контактов между частицами имеют при этом и разную прочность. Ступени соответствуют в этом случае разрушению группы контактов одной определенной прочности;
- 2) с увеличением сжимающих напряжений модуль сдвига глинистых грунтов закономерно возрастает, что обусловлено происходящим уплотнением грунта.

Поглощение грунтов исследовалось по уменьшению амплитуды свободных колебаний образцов во времени. Практически полное затухание колебаний происходит в течение 7-12 циклов, по которым и производился расчет поглощения (рис.3).

Изменение кривой зависимости коэффициента поглощения от сдвиговой деформации образца представляет собой почти «зеркальное» отражение кривых

зависимости для модуля сдвига (рис.4). Сначала поглощение невелико (3-4%) и не до некоторого значения деформации (0,005-0,015%), далее возрастает при уровне сдвиговых деформаций (0,015-0,09%), а затем стремится к своему максимальному значению при деформациях от 0,07% до 0,1%.

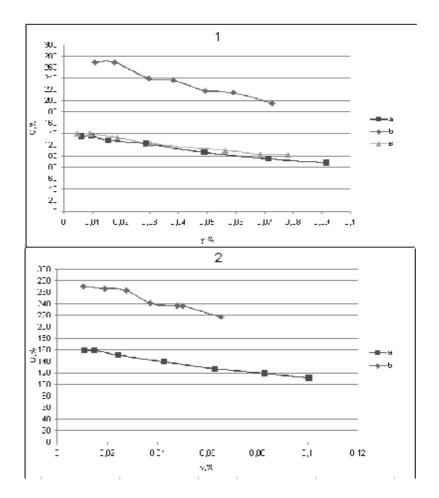


Рис. 2. Изменение модуля сдвига (G,МПа) от сдвиговой деформации (g,%) при природной (1) и дополнительной (2) нагрузке: а – суглинков легких пылеватых (laQ_{II}tg); б – глин тяжелых (N_2 -Q₁kč); в – суглинков тяжелых пылеватых (N_2 -Q₁kč).

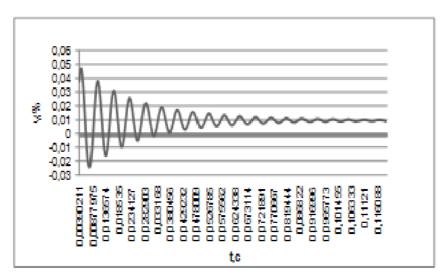


Рис. 3. Затухание сдвиговых деформаций (g,%) во времени суглинков тяжелых пылеватых (Pg_3 nm).

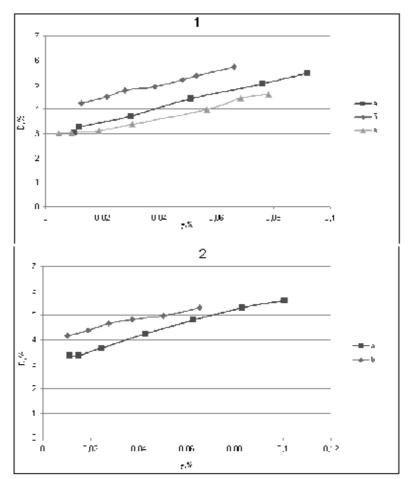


Рис. 4. Изменение коэффициента поглощения (D,%) от сдвиговой деформации (g,%) при природной (1) и дополнительной (2) нагрузке: а – суглинков легких пылеватых (laQ_{II}tg); б – глин тяжелых (N_2 -Q₁kč); в – суглинков тяжелых пылеватых (P_3 nm).

Таким образом, полученные нами данные свидетельствуют о том, что жесткость и поглощение глинистых грунтов в значительной степени определяется следующими факторами:

- величиной сжимающих напряжений, а, следовательно, глубиной залегания грунтов;
 - составом грунтов;
 - их физическими и физико-химическими свойствами.

Из полученных результатов следует, что важнейшим из них, и это следует из установленного нами факта изменения как модуля сдвига, так и поглощения, является величина сжимающих напряжений. Вместе с тем надо отметить, что влияние этого фактора не является определяющим.

ЭКОЛОГО-ГИДРОГЕОХИМИЧЕСКАЯ СТРУКТУРА ЗОНЫ ИНТЕНСИВНОГО ВОДООБМЕНА ЛЕВОБЕРЕЖЬЯ ВОРОНЕЖСКОГО ВОДОХРАНИЛИЩА

Золототрубова Ольга Борисовна

Геологический ф-т ВГУ, Воронеж, <u>hope.86@list.ru</u>

Рост численности городского населения, увеличение количества транспорта, хозяйственная деятельность в целом, провоцируют обострение экологической обстановки в городе. Износ технической базы заводов, недостаточный контроль за сбросом отходов приводят к серьёзному ухудшению качества как подземных, так и поверхностных вод. В гидрогеологическом отношении в геологическом разрезе района выделяются три водоносных горизонта подземных вод: верховодка, неоген-четвертичный и девонский. Верховодка распространена спорадически на глубинах 2-6 м с водоупором на линзах суглинков и глинистых песков зоны аэрации.

Неоген-четвертичный аллювиальный горизонт грунтовых вод имеет повсеместное распространение. Глубина его залегания зависит от геоморфологических условий, наличия в рельефе понижений. Так в центральной части водораздела уровень первого горизонта грунтовых вод залегает на глубине 20 м, в пределах понижений – 14-16 м. Поток неоген- четвертичного водоносного горизонта имеет общее направление с востока на запад – от долины реки Усманки к водохранилищу. Его водоупором служит кровля карбонатных глин и известняков верхнего девона, залегающих на глубинах 55-60 м. Мощность горизонта 35-40 м. По данным региональных гидрогеологических исследований водоупор не выдержан в плане, в результате чего отмечается взаимосвязь неоген-четвертичного и девонского водоносных горизонтов.

После проведения всех исследовательских работ по мониторингу за состоянием окружающей среды было установлено, что загрязнение почв нефтепродуктами характеризуется значительной изменчивостью – от 95 мг/кг до 14 310 мг/кг. Превышение экологической нормы отмечается на площадке размещения гаража и резервуаров нефтепродуктов. По остальной территории оно составляет от 0,095-0,02 до 0,8-0,16 экологической нормы. Загрязнение почв