

Оценка поступления органического вещества в термокарстовые озера Ямала с использованием дистанционных и наземных наблюдений

Дворников Юрий Аспирант ИКЗ СО РАН ydvornikow@gmail.com

- анализ механизма поступления органики в термокарстовые озера
- оценка распределения органического вещества в водосборных бассейнах
- оценка влияния климатических изменений на транспорт органики в условиях развития ММП

методика исследования

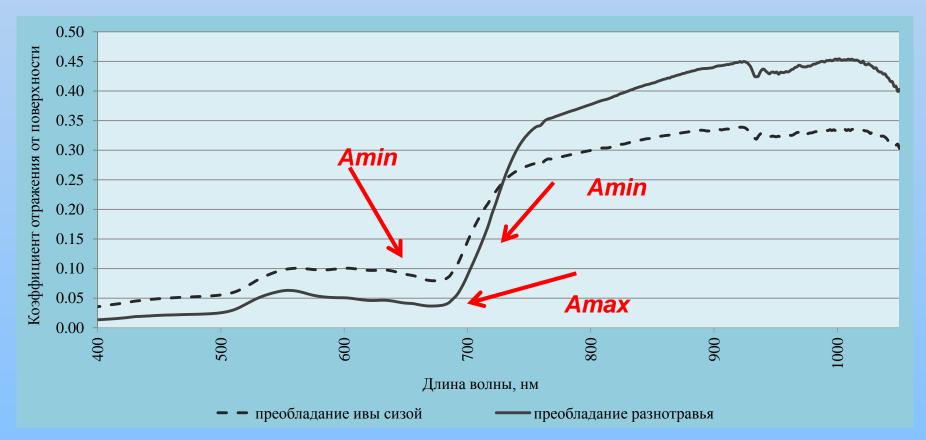
образуется из разрушенной в почве растительности

накапливается в почвах в форме торфа

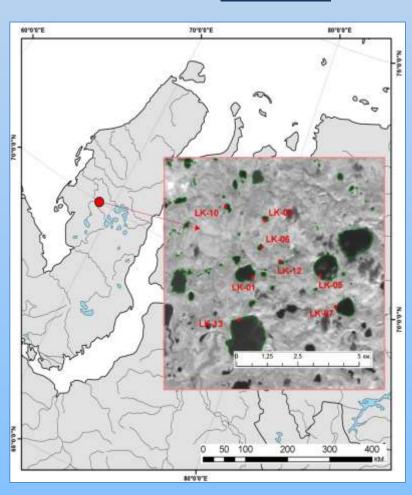
количество зависит от характера растительного покрова, возраста бассейнов и др.

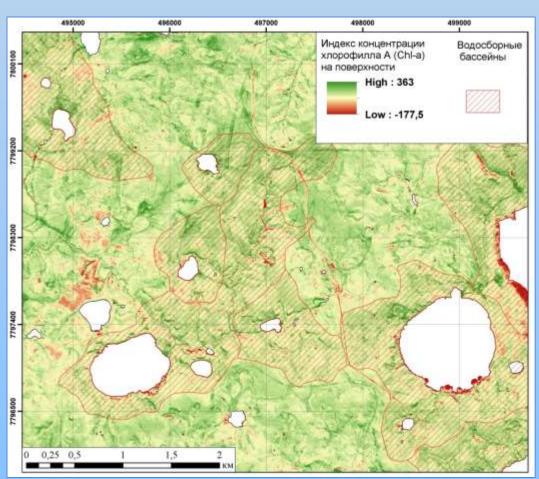
напрямую зависит от <u>интенсивности</u> <u>процесса фотосинтеза</u>

интенсивность процесса фотосинтеза может быть описана через индекс концентрации хлорофилла A на поверхности (Chl-a)



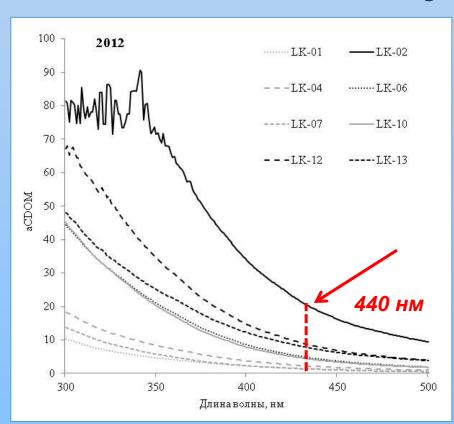
расчет индекса


расчет индекса Chl-а на поверхности основан на знании того, что растительность интенсивно поглощает волны красной области спектра (650-700 нм) для поддержания происходящего в ней процесса фотосинтеза



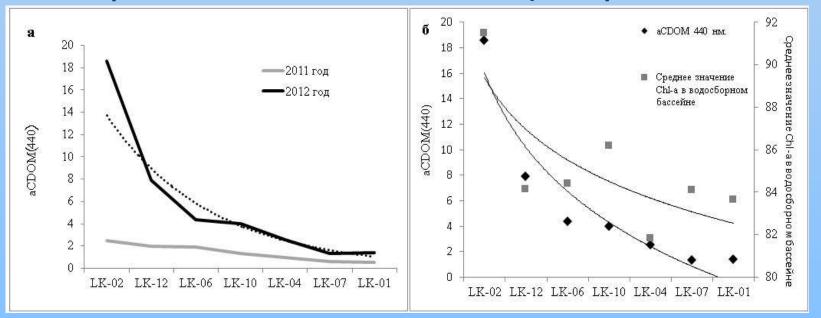
расчет индекса

GeoEye-1 Chla = (DNgreen + DNnIR)/2 – DNred

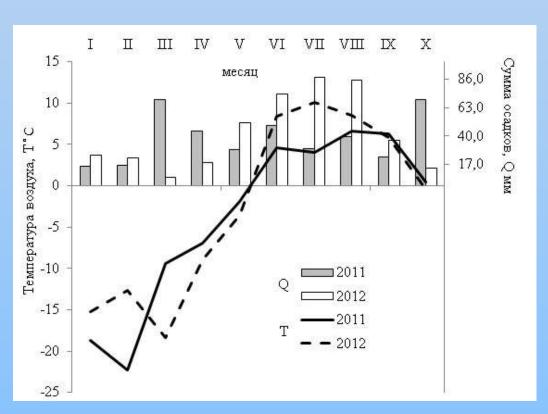


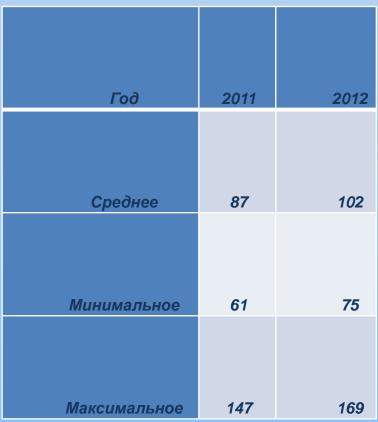
лабораторный анализ проб воды

Средние значения индекса в ВБ были сравнены со значениями концентрации растворенной органики в озерной воде - Colored Dissolved Organic Matter (cDOM)



Озеро	Площадь водосборного бассейна, км²	Среднее значение индекса Chl-а в ВБ	а _{сDOM} (440) нм. 2012 год
LK-04	2,72	81,82	2,526
LK-01	2,64	83,64	1,386
LK-07	2,23	84,1	1,310
LK-12	0,79	84,12	7,928
LK-06	0,55	84,4	4,379
LK-10	1,96	86,16	3,975
LK-02	0,37	91,49	18,585


- установлено, что значения $a_{cDOM}(440)$ имеют высокую корреляцию со средним значением индекса Chl-а в водосборных бассейнах (r = 0.89)
- результаты анализа проб воды на а_{сDOM}(λ) за 2011 и 2012
 демонстрируют достаточно большие различия в значениях. Для объяснения различий в значениях концентрации сDOM нами было проанализировано влияние климатического фактора.



анализ климатических условий

Проанализированы следующие параметры: средняя месячная температура воздуха и сумма осадков, данные промеров глубины СТС

- количественно подтверждено, что изменение климатических условий может привести к повышению концентрации растворенной органики в водных объектах
- количество органического вещества зависит от интенсивности процесса фотосинтеза тундрового растительного покрова, которая достаточно точно оценивается индексом Chl-a,
- проведенные исследования позволяют выявлять степень активизации береговых процессов в зоне распространения ММП, а также констатировать динамику состояния термокарстовых озер