ОЦЕНКА ГРУНТОВ В ОСНОВАНИИ ПРОЕКТИРУЕМЫХ ЗОЛОШЛАКООТВАЛОВ САХАЛИНСКОЙ ГРЭС-2 КАК ГЕОХИМИЧЕСКИХ БАРЬЕРОВ

В.И. Сергеев, А.Ю. Бычков, М.Л. Кулешова, Н.А. Свиточ, Т.Г. Шимко

На о. Сахалин планируется строительство тепловой электростанции, которая будет работать на углях двух местных месторождений: Горнозаводского и Солнцевского. Отходы ТЭС в виде золы и шлака планируется складировать на двух участках площадью 85 га (для сухой золы) и 23 га (для удаляемых водой шлаков). Для этих объектов проведены исследования по оценке защищенности подземных вод на участках размещения золо- и шлакоотходов. Работы проводились в соответствии с методикой, разработанной в ЛОГС [1]. Ключевым моментом этой методики является положение о том, что грунтовая толща в основании участка складирования, если она сложена дисперсными грунтами, может рассматриваться в качестве геохимического барьера для загрязнителей благодаря процессам поглощения происходящим при контакте грунта и раствора с токсичными элементами.

В соответствии с методикой, в результате анализа инженерно-геологических условий района Сахалинской ГРЭС-2, выявлено наличие грунтовых толщ, которые можно рассматривать в качестве геохимических барьеров, и определены основные литологические разности, слагающие их. Для характеристики грунтов по площади и глубине из скважин были отобраны девять образцов: почва, торф, глина легкая и пять разновидностей суглинка. По результатам изучения минерального и гранулометрического состава грунтов, в связи со сходством состава некоторых разновидностей суглинков, для дальнейших исследований сорбционных свойств были выбраны шесть образцов.

Определение элементов-загрязнителей в отходах было невозможно, так как предприятие только проектируется. Для оценки состава золы и шлаков сахалинских углей было проведено их озоление и сплавление в муфельной печи. Выявление потенциальных элементов-загрязнителей проводилось по результатам химического состава водных вытяжек из полученных зол и шлаков, с учетом возможного объема инфильтрации атмосферных осадков в регионе и прогнозируемых объемов золошлаковых отходов во времени. Превышения над ПДК установлены для для V - в 1050, Мо - в 572, W - в 57, Сг – в 5, Se – 2,7, As –в 1,7 раз; рН=8,5. Модельный раствор, на котором в последующем проведены исследования поглощающей способности грунтов, был приготовлен с использованием жидкой фазы золошлаковых отходов подмосковной ТЭЦ-22 (г.

Дзержинский), где концентрации указанных элементов были доведены до величин, соответствующих их концентрациям в прогнозируемом фильтрате.

Предварительная оценка поглощающей способности грунтов (N) в статических условиях позволила выделить из шести только четыре литологические разности для проведения более точной их оценки как геохимического барьера в динамическом режиме. К ним отнесены: торф bQ _{IV} (обр.2), как грунт, имеющий почти повсеместное распространение в ложе золоотвала №1; глина a-dQ (обр.1) и два суглинка a-dQ, с наибольшей (обр.3) и наименьшей (обр.5) величинами поглощающей способности в отношении загрязнителей. По результатам экспериментальных исследований были построены «выходные кривые» зависимости относительной концентрации элементовзагрязнителей от объема профильтровавшегося модельного раствора через колонку с образцом грунта. На этих же колонках оценивалась десорбция загрязнителей при фильтрации воды через опытные образцы. По полученным экспериментальным данным выполнено математическое моделирование с использованием микродисперсионной массопереноса и рассчитаны миграционные параметры потенциальных модели загрязнителей в процессе массопереноса в грунтах рассматриваемых в качестве геохимического барьера. Обобщенные результаты приведены в табл. 1.

Таблица 1 Характеристика грунтов как геохимических барьеров.

Элемен ты-	Торф (обр.2)		Суглинок (обр.5)		Глина (обр.1)		Суглинок (обр.3)	
загрязн ители ⁵⁾ ПДК, мг/л	¹⁾ N, мг/см ³ ²⁾ - N,%	$\frac{^{3)}\mathbf{n_3}}{^{4)}\mathbf{D}_{,\mathrm{M}}^{2}/\mathrm{cyr}}$	N, мг/см ³ - N,%	N ₃ D , м ² /сут	N, мг/см ³ - N,%	N ₃ D ,м ² /сут	N, мг/см ³ - N,%	N ₃ D ,м ² /сут
V	0,255	206,5716	0,254	198,351	0,418	157,561	0,348	269,447
0,001	- 77%	9,3735*10 ⁻⁴	-72%	3,7626*10*-3	-25%	2,0652*10 ⁻³	-97%	5,6470*10 ⁻³
Mo	0,054	96,498	0,010	15,326	0,064	н/о	0,025	58,998
0,001	- 7%	7,814*10 ⁻⁵	- 10%	2,0590*10 ⁻³	- 11%	н/о	- 1%	4,3823*10 ⁻³
W	0,007	124,354	0,003	41,299	0,005	н/о	0,004	82,139
0,0008	- 49%	2,2882*10 ⁻⁴	-53%	4,3649*10 ⁻³	- 32%	н/о	-60%	2,240*10 ⁻³
Cr	0,040	326,042	0,001	3,5860	0,014	н/о	0,001	н/о
0,02	- 1%	1,7881*10 ⁻³	- 2%	6,8998*10 ⁻³	- 4%	н/о	- 7%	н/о
As	0,011	89,2002	0,011	250,732	0,009	н/о	0,017	н/о
0,05	- 25%	2,2139*10 ⁻³	- 61%	8,7240*10 ⁻⁴	- 74%	н/о	- 76%	н/о
Se	0,002	107,1988	0,002	146,1065	0,002	н/о	0,004	н/о
0,002	- 17%	1,3086*10 ⁻³	- 20%	1,6739*10 ⁻³	- 20	н/о	- 53%	н/о

поглощающая способность грунта в отношении элемента загрязнителя, мг/см³; ²⁾ десорбция элемента загрязнителя; %; ³⁾ эффективная пористость; ⁴⁾ коэффициент дисперсии, м²/сут; ⁵⁾предельно допустимые концентрации элементов для рыбохозяйственных водоемов

На основании полученных данных по сорбции и десорбции и выполненных расчетов защищенности подземных вод даны рекомендации по дополнительным мера защиты на

некоторых участках золохранилища, и сделан вывод о защищенности участка шлакоотвала на заданный период эксплуатации.

Литература

1. Сергеев В. И., Шимко Т.Г., Кулешова М.Л., Малашенко З. П., Петрова Е. В. Методика количественной оценки степени защищенности подземных вод от загрязнения в районах захоронения токсичных и радиоактивных отходов. Авторское свидетельство № 8570 от 17 мая 2005.