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INTRODUCTION

Thermodynamic models accounting for the forma-
tion of molecular complexes (associates) that are in a
reversible chemical equilibrium with unreacted oxides
in melts and obey the law of mass action have been
widely used in the modern theory of glass-forming
melts [1]. The methods used for simulating these sys-
tems have been developed within the theory of associ-
ated solutions [2] and used to describe the mixing prop-
erties of metallurgically important oxide systems [3], as
well as a number of alkali silicate and silicoborate sys-
tems (see, for example, [4, 5]). However, one of the
main problems associated with the practical use of the
models under consideration is a correct choice of an
optimum set of chemical compounds that can allow one
to describe adequately the behavior of more complex
systems involving different combinations of metal
oxides and complex-forming components, in particular,
SiO

 

2

 

 and Al

 

2

 

O

 

3

 

. This problem cannot be solved using
only data on physical properties of glasses or character-
istics of simple phase diagrams. It is necessary to
invoke structural chemical models that are based on the
results of spectroscopic investigations of the structure
of silicate melts and take into account the possibility of
forming various complexes, including those with high

molecular masses. This implies the necessity of devel-
oping and analyzing models of polymer equilibria,
which occur in silicate melts and lead to the formation
of silicon–oxygen groups that differ substantially in the
composition, size, charge, structure, etc.

In the 1960s–1970s, several approaches were pro-
posed for the construction of the model of silicate liq-
uids with allowance made for the dissociation of metal
oxides in a melt,

, (1)

and the polycondensation of silicon–oxygen tetrahedra
with the formation of high-dimension chain–ring struc-
tures

(2)

where 

 

i

 

 is the polyanion size (the number of silicon
atoms) and 

 

j

 

 is the number of intramolecular closures of
Si–O–Si silicon–oxygen bonds [6–9]. These reactions
lead to the formation of chain (

 

j

 

 = 0) and various cyclic
(or ring, 

 

j

 

 

 

≥

 

 1) structures. Their common feature is the
assumption that the final number of polymer species
and low-molecular products, i.e., O

 

2–

 

 ions, are in equi-
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Abstract

 

—A new statistical model is proposed for describing an equilibrium structure of polymer complexes
in a silicate melt. The model makes it possible to calculate the molecular-mass distributions of polyanions of
the general formula (Si
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)–

 

, where 

 

i

 

 is the number of silicon atoms and 

 

j 

 

is the number of intramo-
lecular closures of bridging bonds. The proposed model is implemented as the STRUCTON computer program
(version 1.1, 2006) intended for calculating the composition and proportions of polyanions at different degrees
of polymerization of the system. The executable code is implemented on personal computers. The distributions
of 

 

Q

 

n

 

 structons, which are obtained experimentally from Raman and NMR spectroscopic data or evaluated the-
oretically, are used as input parameters for the computer program. The testing calculations are performed with
the STRUCTON program for three arbitrary distributions of 

 

Q

 

n

 

 particles corresponding to different degrees of
polymerization 0.25 

 

≤

 

 

 

α

 

 

 

≤

 

 0.49 for the model system containing 10

 

4

 

 initial structons. The results of the statis-
tical simulation have demonstrated that a limited ensemble of polymer complexes is formed in the system, so
that the mean number of different types of complexes varies from 46 to 141. This result correlates with an
increase in the mean size of anions from 1.87 to 8.60 and with a decrease in the total number of polymer particles
from 5320 to 1166 in the aforementioned range of degrees of polymerization 

 

α

 

.
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librium. The concentration (activity) of free oxygen
ions O

 

2–

 

 is considered a characteristic of the basicity of
the silicate melt [10–12] and plays an important role in
the evaluation of the degree of polymerization of the
silicon–oxygen matrix and the size distribution of
anionic complexes. The knowledge of the size distribu-
tion of anionic complexes, i.e., their molecular-mass
distribution [13], is crucial for evaluating the thermody-
namic properties of silicate melts according to the the-
ory of associated solutions [8, 14, 15].

A large number of attempts to calculate the molecu-
lar-mass distributions of complexes have been made
with the use of statistical simulation methods [16, 17]
and semiempirical models of anion equilibria, which
were proposed for describing linear and branched
chains [18–21], dominant linear ring structures [22],
and different anionic complexes [23] with the inclusion
of isomers [7, 8], as well as using molecular dynamics
methods [24, 25]. Despite these numerous attempts, no
satisfactory model that can provide a means for calcu-
lating the molecular-mass distribution of complexes
has been offered to date [1, 4].

In this paper, we propose a new approach for calcu-
lating the molecular-mass distribution of anionic com-
plexes in silicate melts and report on the results of the
computations performed for melts with low and moder-
ate degrees of polymerization up to the gelation point of
the silicate liquid.

In our work, we use the notion of gelation. Accord-
ing to the 

 

Large Encyclopedic Dictionary on Chemistry

 

[26], the gelation is defined as follows. Gelation is the
transition of liquids to a solidlike state due to the
appearance of a three-dimensional structural network
in the bulk of the liquid. In polymer melts, the network
is formed through chemical cross-linking of linear
macromolecules as a result of three-dimensional poly-
merization or polycondensation of monomers. The
instant of time when the reaction mixture loses fluidity
due to the cross-linking of growing polymer chains is
referred to as the gelation point.

MAIN PRINCIPLES OF THE SIMULATION
OF A POLYANIONIC ENSEMBLE 

Information on the distribution of silicon–oxygen
tetrahedra with different numbers of singly bonded (ter-
minal, nonbridging) and doubly bonded (bridging)
oxygen atoms in a polymerized matrix is the input
parameter of the model. These Si particles are termed

 

Q

 

n

 

 structons (0 

 

≤

 

 

 

n

 

 

 

≤

 

 4) and correspond to structural
units that form polymer complexes of different sizes
[11, 26, 27]. The 

 

Q

 

4

 

 structon is a monomer in which all
four silicon–oxygen bonds are bridging. In the 

 

Q

 

3

 

, 

 

Q

 

2

 

,
and 

 

Q

 

1

 

 structons, the ratios between the bridging and
nonbridging bonds are equal to 3 : 1, 1 : 1, and 1 : 3,
respectively. The 

 

Q

 

0

 

 quasiparticle, which involves four
oxygen terminal atoms, is the sole structon that coin-

cides with the real anion, i.e., the Si  monomer, in
the polymerized matrix. The distribution (relative con-
centration) of 

 

Q

 

n

 

 structons can be measured using
NMR and Raman spectroscopy [28–31]. In a number of
cases, it has been assumed that the structon distribution
can be described using a Bernoulli distribution [11, 16,
33]. This is equivalent to the assumption that the chem-
ical bonds have the same reactivities and which has
been usually used in kinetic models of growth of sili-
con–oxygen polymer chains [18–21].

In the framework of the model under consideration,
a polymerized anion is treated as a random sequence of

 

Q

 

n

 

 structons. The entire ensemble of anions is repre-
sented by a set of all possible polymers, i.e., random
sequences of silicon–oxygen tetrahedra corresponding
to a specified distribution of 

 

Q

 

n

 

 structons in the silicate
matrix.

The number of O

 

2–

 

 ions in the polycondensed sys-
tem depends on the chemical composition of the melt
and the number of newly formed bridging bonds [see
reaction (2)] and, hence, is uniquely determined by the
distribution of 

 

Q

 

n

 

 structons for the melt of the given
composition. This circumstance enables us to disregard
the presence of free oxygen ions when simulating the
ensemble of polyanions with the specified distribution
of structons.

The algorithm for reconstructing polyanions can be
developed using the sequential assembly of 

 

Q

 

n

 

 struc-
tons when, at each simulation stage, one Si–O–Si bond
is formed according to reaction (2). It is evident that the

 

Q

 

1

 

 particle in the course of polymerization can form
only one bridging bond. This “potentially bridging”
bond will be called an unsaturated bond. The 

 

Q

 

2

 

, 

 

Q

 

3

 

,
and 

 

Q

 

4

 

 structons have two, three, and four unsaturated
bonds, respectively. According to the formulated defini-
tion, the simulation of polyanions through the sequen-
tial assembly of the 

 

Q

 

n

 

 structons can be treated as a pro-
cess of “saturation of unsaturated bonds.” The polymer
particle in which all bonds are saturated will be referred
to as the formed particle. Therefore, the simulation of
the ensemble of polyanions in the melt is reduced to the
sequential accumulation of polymers composed of 

 

Q

 

n

 

structons with saturated bridging bonds. The 

 

Q

 

0

 

 parti-
cle is the sole particle that does not form bridging

bonds. This particle is interpreted as the Si  ion and
added to the model ensemble of polyanions as an inde-
pendent structural units.

It should be noted that the model allows for the use
of different distributions of 

 

Q

 

n

 

 structons in glass-form-
ing melts as initial information and, thus, permits us to
take into account that terminal oxygen atoms have dif-
ferent reactivities, which reflect in variations in the pro-
portions of 

 

Q

 

n

 

 structons at a fixed ratio between the
numbers of nonbridging and bridging bonds in the sili-
cate melt [14]. The results of spectroscopic investiga-
tions of silicate glasses and melts provide a large

O4
4–

O4
4–
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amount of experimental data on the distributions of 

 

Q

 

n

 

structons [29–32].

ALGORITHM FOR SIMULATING
THE MOLECULAR-MASS DISTRIBUTION
OF POLYANIONS IN A SILICATE MELT

Let us now consider 

 

N

 

 initial monomers that are rep-
resented by 

 

Q

 

n

 

 structons distributed in the proportion

 

x

 

0

 

 : 

 

x

 

1

 

 : 

 

x

 

2

 

 : 

 

x

 

3

 

 : 

 

x

 

4

 

 (

 

x

 

0

 

 + 

 

x

 

1

 

 + 

 

x

 

2

 

 + 

 

x

 

3

 

 + 

 

x

 

4

 

 = 1). Obviously,
the probability 

 

P

 

n

 

 that the next monomer during the
process of assembly of the polymer sequence is a 

 

Q

 

n

 

structon is equal to the relative fraction of the given
structon; i.e., Pn = xn. The first particle can appear to be
a Q0 monomer with a probability P0. If the first ran-
domly occurring monomer is a Q0 particle, the number

of Si  ions in the silicate melt becomes equal to
unity. Subsequently, each occurrence of the Q0 particle

leads to an increase in the number of Si  ions by
unity. When the first occurring monomer is a Q1 struc-
ton (the probability of the given event is P1), this poten-
tial polymer fragment is unsaturated and the choice of
the sequence of monomers will be continued. It is clear
that the saturation of the bond of the Q1 structon chosen
at the first step is continued only after occurrence of a
particle that also has unsaturated bonds. The probabil-
ity of this event is (1 – P0), because the occurrence of
the Q0 monomer cannot result in the saturation of bridg-
ing bonds and its elimination from the reaction is

accompanied by the increase in the number of Si
ions in the silicate melt. As a consequence, the next
monomer in the formed sequence can appear to be a Q1

structon. The probability of this event for the second
monomer in the sequence of reactants is P1/(1 – P0). In
this case, two unsaturated bridging bonds of two Q1

structons form one saturated bond of the Si2  dimer,
which is a finished polymer particle (polyanion) and
added to the ensemble of particles of the polyanion
matrix. After formation of the saturated dimer (like any
other particles with saturated bonds), the next polymer
sequence will be formed. If the second monomer in the
polymer sequence is a Q2, Q3, or Q4 particle, the dimer
formed as a result of the formation of one bridging
bond is not saturated (there are one, two, or three unsat-
urated bonds) and the formation of a new polymer will
be continued. However, when the second monomer in
this sequence turns out to be a Q2 structon and the third
monomer is a Q3 structon, the resulting trimer has no

saturated bonds and should be interpreted as a Si3

ion. The probability of formation of this ion is

P2/(1 – P0)2.

In this model, the important constraint is imposed
on the formation of polymers: two monomers in one

O4
4–

O4
4–

O4
4–

O7
6–

O10
8–

P1
2

sequence can be linked together only by one bridging
bond. The constraint is equivalent to the fact that the sil-
icate tetrahedra cannot be shared by edges or faces. The
silicate tetrahedra can be shared only by vertices. As a

consequence, cyclic dimers Si2  consisting of Q1

and Q2 particles or dimers Si2  composed of two Q2

particles cannot be formed. In a similar way, other

metastable ring structures, such as trimers Si3  and

tetramers Si4 , are eliminated from consideration. A
minimum cyclic polymer that can be formed in this

case is a Si3  ion consisting of three Q2 structons.
According to our model, this trimer is formed as a result
of two sequential events: the formation of the unsatur-
ated trimer that involves three Q2 particles and has two
unsaturated bonds and the subsequent closure (cycliza-
tion) due to the formation of the bridging bond between
the first and third unsaturated monomers in the trimer.
It is evident that the probability of the former event is

/(1 – P0)2. A further behavior of the unsaturated tri-
mer is possible in terms of our model: the trimer can
either form the bond with anyone of the unsaturated Qn

particles (which remained in the reservoir of possible
reactants) or undergo cyclization, i.e., the formation of
the bridging bond between the first and third mono-
mers. Obviously, the conditional probability of the sum
of these two events is equal to unity.1 

When the Q1 structon occurs as the next monomer in
our sequence, it can combine with the unsaturated tri-
mer in two ways (according to the number of unsatur-
ated bonds), whereas the cyclization can proceed only
in one way (see above). Under the assumption that the
probabilities of formation of the bridging bond between
any pairs of unsaturated bonds of Qn structons are equal
to each other, the probability of cyclization in the case
of the occurrence of the Q1 particle is equal to 1/3. In
the case of the occurrence of the Q2 particle, this prob-
ability is equal to 1/5, because two unsaturated bonds of
this structon can form bridging bonds with two unsatur-
ated bonds of the trimer in four ways. For the occur-
rence of Q3 and Q4 particles, the corresponding proba-
bilities are equal to 1/7 and 1/9, respectively. Therefore,
the probability of self-closure of the unsaturated bonds

in the trimer with the formation of the Si3  ion can
be written in the form

(3)

1 The conditional or Bayesian probability is a probability of the
occurrence of a given event when another even has already
occurred. In our case, the latter event is the formation of the
unsaturated trimer from three Q2 particles.
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In the general case, if an unsaturated polymer has m
unsaturated bonds that can form with each other k
allowed bridging bonds, the probability of formation of
the cyclic bond is represented as follows:

(4)

where Pc is the cyclization probability.2

Therefore, the proposed statistical model is reduced
to random connections of all possible sequences of Qn

2 The proposed scheme of cyclization is not the sole possible
scheme. In the framework of our approach, it is possible to con-
sider one more mechanism according to which the probability of
cyclization is determined by the ratio between the number of
unsaturated bonds inside the polymer particle and the number of
pairs formed by the unsaturated bonds of the given polymer parti-
cle with unsaturated bonds of other particles in the system. The
probability of cyclization according to this mechanism is lower
than that in the aforementioned mechanism.

Pc

k
m k+
-------------P1

k
2m k+
----------------P2

k
3m k+
----------------P3

k
4m k+
----------------P4+ + +

1 P0–
---------------------------------------------------------------------------------------------------------,=

Pc
k

m k+
-------------,<

structons by bridging bonds with the formation of lin-
ear, branched, or cyclic polymer complexes. Each
sequence is constructed to the complete saturation of
bridging bonds in the formed polymer structure with
due regard for the constraint that a given pair of mono-
mers can be linked only by one bridging bond. For the
polymer sequence involving unsaturated monomers,
the probability of self-closure is given by relationship
(4) and the probability of growth of the sequence of Qn

particles (an increase in the polymer size) is defined by
the expression

(5)

where  is the probability of growth of the polymer

sequence through a Qn monomer and the probability Pn

corresponds to the mole fraction of Qn structons in the
initial system. Examples of a number of compositions
of low-molecular species (including isomers) that can
be constructed using the aforementioned statistical sim-
ulation are presented in Table 1.

P
Q

n

nm
nm k+
----------------Pn,=

P
Q

n

    
Table 1.  Representation of the compositions of chain and cyclic polymer complexes as sequences of Qn structons

Linear and branched chains (j = 0) Cyclic complexes (j = 1)

Anion
composition Q1 Q2 Q3 Q4 Anion

composition Q1 Q2 Q3 Q4

Si2 2 – – – Si3 – 3 – –

Si4 2 2 – – Si4 – 4 – –

3 – 1 – 1 2 1 –

Si5 2 3 – – Si5 – 5 – –

3 1 1 – 2 1 2 –

Si6 2 4 – – 1 3 1 –

3 2 1 – 2 2 – 1

Si7 3 3 1 – Si6 – 6 – –

4 1 2 – 2 2 2 –

4 2 – 1 1 4 1 –

5 – 1 1 2 3 – 1

Si10 5 2 3 – Si8 2 4 2 –

3 6 1 – 3 2 3 –

Si12 4 6 2 – 1 6 1 –

5 5 1 1 4 1 2 1

Note: Only dominant low-molecular species are given. The formation of high-molecular complexes can be accompanied by the appear-
ance of numerous isomers, which in the results of calculations will be represented by one chemical composition corresponding to
the anions of the general formula (SiiO3i + 1 – j)

2(i + 1 – j)– .

O7
6–

O9
6–

O13
10–

O12
8–

O16
12–

O15
10–

O19
14–

O22
16–

O18
12–

O31
22–

O24
16–

O37
26–
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COMPUTER IMPLEMENTATION
OF THE MODEL

In order to perform practical calculations in the
framework of the proposed stochastic model, we devel-
oped the computer program STRUCTON with the use
of the Monte Carlo method. The program flow chart is
shown in Fig. 1. The calculations according to this pro-
gram are carried out using a standard generator of
(pseudo)random numbers. This generator is included in
the software of the high-level language Borland Pascal
and uniformly generates in the interval from 0 to 1 in
the number axis. The generator allows one to simulate
easily a discrete random quantity ξ that takes on values
ξn (n = 0, 2, … 4 in accordance with the number of Qn

structons) with probabilities P0, P1, …, P4. For this pur-
pose, the interval [0, 1] was divided into five segments
each Pn in length. A number between 0 and 1 was
obtained with the use of the random number generator.
The value of ξn was assigned to the random quantity
depending on the number n of the segment containing
the obtained random number. This simple procedure
provided the basis of the applied method.

The initial stage of calculations with the STRUC-
TON program involved the specification of the relative
proportions of Qn structons in the system. The found
probabilities Pn were used for generating a random
number determining the occurrence of the Qn particle
(Fig. 1). If the first structon was a Q0 monomer, the

number of Si  ions in the simulated melt was
increased by unity. When the first structon was an
unsaturated Qn particle, the number of unsaturated
bonds in the polymer chain was calculated and a ran-
dom number was generated so that it took on one of the
two values corresponding to the cyclization or attach-
ment of a new Qn monomer. The probabilities of ring
formation [expression (4)] and increase in the size of
the polymer complex [relationship (5)] are equal to
k/(nm + k) and nm/(nm + k), respectively. At the next
stage, the pairs of unsaturated bonds closed inside the
polymer and unsaturated bonds to which a new Qn par-
ticle was attached were simulated under the assumption
that the probabilities of formation of bridging binds by
any pair of unsaturated bonds of Qn structons are iden-
tical to each other. Upon saturation of all bonds in the
polymer chain, i.e., after completion of formation of the

O4
4–

Initial state of the system:

Choice of the growth or cyclization of the polymer complex

Choice of the pair of unsaturated bonds

of unsaturated bonds, and determination of the number of formed closures

N = 10000 is the total number of monomers
(Qn structons), and Np is the number of polyanions

Specification of the proba-
bilities Pn (Pn = Xn) of the for-

mation of Qn structons

Random generation of Qn structons with
the use of the random number generator

Analysis of the particle type and the separation of Q0 structons

If Q0 particle If Q1, Q2, Q3, or Q4 particles

with the random number generator from expressions

Attachment of the monomer Ring formation

Choice of the unsaturated bond
in the polymer for attachment of a
new monomer with the use of the

random number generator

in the polymer for the ring formation
with the use of the random

number generator

Analysis of the polymer chain: the calculation 
of the number of unsaturated bonds, determination of ring-forming pairs

If all bonds are saturated If there are unsaturated bonds

Formation of the ensemble of polyanions: Np = Np + 1,
and N = N – 1

(4) and (5)

Fig. 1. Schematic flow chart of the STRUCTON computer program (version 1.1, 2006) developed for simulating the molecular-
mass distributions of polyanions in silicate melts according to the specified distributions of Qn particles.
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polyanion, the composition [formula (2)], size, and
charge of this polyanion were written in a special file.
Correspondingly, the number of polymer particles was
increased Np = Np + 1, and the number of potential Qn

structons in the initial reservoir was decreased by unity
N = N – 1. The calculations were terminated at the cur-
rent value N = 0.

The above scheme of computations (Fig. 1) charac-
terizes one model calculation (one realization) at the
specified distribution of Qn structons. With due regard
for the probabilistic character of the model, it is neces-
sary to perform the corresponding calculations at least
several tens of times by evaluating the reproducibility
and statistical parameters of the calculated distribu-
tions. In the testing calculations described below, we
carried out 50 these realizations for each distribution of
Qn structons. Taking into account that the number of
initial Qn monomers used in each realization is N =
10000, the final results of the simulation of the molec-
ular-mass distributions can be treated as those obtained
for 500000 Qn structons. The corresponding update of
the random number generator was performed using the
procedure “randomization” after each 10000 steps.

RESULTS OF THE SIMULATION

Three variants of the distribution of Qn particles
corresponding to the condition 2Q1 + Q2 > Q3 + 2Q4

(Table 2) were chosen for testing calculations. This
condition ensures that the number of nonbridging oxy-
gen bonds exceeds the number of Si–O–Si bonds and
the system does not reach a gelation point at which
polymer sequences are characterized by unlimited
growth (see below). As a result of 3 × 50 = 150 realiza-
tions, we succeeded in simulating a large number of

states from the state containing predominantly Si

monomers and a small number of Si2  ions (variant I)
to a strongly polymerized matrix involving more than
one hundred of species of silicon–oxygen particles
(variant III). A variety and reproducibility of model
ensembles and the relative concentration of polyanions
are illustrated by Table 3, which is constructed using
the results of calculations for the first distribution of Qn

structons (Table 2). The calculations simulate a moder-
ate degree of polymerization of the system, in which

the Si  ions (i = 1, j = 0) amount to approximately
40% of model particles and the other particles are con-
tained in complexes. These particles, together with

Si  monomers, form, on average, 5320 ± 34 parti-
cles from each 104 initial structons. Therefore, the

mean mole fraction of Si  ions among polyanions is
approximately equal to 0.75 (~0.40 × 10000/5320).
The concentration of the other chain and ring structures
decreases progressively with an increase in the polyan-
ion size i and the number of cyclizations j (Table 3).

O4
4–

O7
6–

O4
4–

O4
4–

O4
4–

The variance of the model concentration of poly-
mers can serve as a measure of “stability” of model
ensembles. This variance is calculated as the standard
deviation (1σ) estimated for each particle species from
the results of 50 calculations and normalized to the cor-
responding mole fraction (in Table 3, these values are
given in parentheses). For dominant low-molecular
species (i ≤ 8, j ≤ 1), the standard deviations of the cal-

culated quantities vary from 0.6% (for Si  ions) to

21.3% (Si8  rings). In this case, the accuracy in the
simulation of chain structures is, on average, higher
than that of ring structures. This circumstance is in
agreement with the general tendency of statistical cal-
culations: the higher the mean concentration of anions,
the higher the reproducibility of this concentration
according to the results of the simulation. The standard
deviations for high-molecular complexes with a content
of ~10–4 of the total number of particles, as a rule, lie in
the range 100–300%.

Similar inferences can be made from the analysis of
the results of calculations for the second variant of the
distribution of Qn structons (Table 4). In this case, the
ensemble with a larger number of various anions

involves Si  monomers and 130 chain and ring
structures, which appeared no less than four times in
the given series of calculations. It should be noted that
these complexes include the entire variety of polymers
observed in the simulation for 500000 particles. This
variety is never reproduced in practical calculations of
one polymer sequence at N = 104. According to the
results of 50 calculations, the mean number of polymer
species is equal to 74 ± 4. A higher degree of polymer-
ization is responsible for the decrease in the total num-
ber of particles from 5320 to 3210 and the increase in

O4
4–

O24
16–

O4
4–

 
Table 2.  Variants of relative proportions (distributions) of
Qn structons in testing calculations

Structon type Variant I Variant II Variant III

Q0 0.40 0.15 0.05

Q1 0.30 0.45 0.30

Q2 0.20 0.25 0.35

Q3 0.10 0.10 0.25

Q4 – 0.05 0.05

Characteristics of the model ensembles of anions

Polymer species 46 ± 3 74 ± 4 141 ± 10

Mean number
of particles

5320 ± 34 3210 ± 41 1166 ± 59

Mean anion size 1.87 ± 0.01 3.12 ± 0.04 8.60 ± 0.44

Note: The mean parameters were estimated from the results of 50
realization, and each realization involved 104 structons. The
standard deviations correspond to ±1σ.
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the mean polymer length from 1.87 to 3.12 (Tables 2–
4). One more important observation following from the
examination of the data listed in Tables 3 and 4 con-
cerns a finiteness of the ensemble of polyanions. This
manifests itself in a limited chain length (i ≤ 23) and a
limited size of ring complexes, which are truncated
polymer sequences decreasing with an increase in the
number of cyclizations j. As was noted above, the main
factor responsible for the limitation of the maximum
size of chain anions is the self-closure of terminal oxy-
gen atoms, whereas the factor hindering the cyclization
(especially, in the case of small-sized species) is asso-

ciated with the fact that silicon–oxygen tetrahedra can-
not be shared by edges and faces.

The dependences of the content of polymer chains
(j = 0) and complexes with different degrees of cycliza-
tion (1 ≤ j ≤ 4) on the polyanion size i according to the
data presented in Table 4 are plotted in Fig. 2. It is
worth noting that the concentration of high-molecular
anions gradually decreases in the case of chain struc-
tures, whereas the distribution curves for ring com-
plexes exhibit maxima. The “peak” distributions of ring
complexes at j = 4 reflect a statistical character of the
method and that a number of 0.5 × 106 initial structons

 
Table 3.  Mole fractions of anionic complexes and their variances according to the results of 50 calculations for the first dis-
tribution of Qn structons (Table 2, variant I)

Anion size i
Number of closures (cyclizations) j of intramolecular bonds

j = 0 (chains) j = 1 j = 2 j = 3

1 0.751894(0.62)

2 0.063264(5.8)

3 0.041642(6.0) 0.004861(20.2)

4 0.030698(8.9) 0.009247(12.2) 0.000951(53.4) 0.000034(265.3)

5 0.021107(10.7) 0.008027(15.6) 0.001015(42.6) 0.000026(319.5)

6 0.014006(12.3) 0.006685(16.1) 0.000778(53.9) 0.000045(196.3)

7 0.009017(14.1) 0.004685(21.0) 0.000688(55.3) 0.000030(229.1)

8 0.005655(18.9) 0.003583(21.3) 0.000706(48.6) 0.000045(177.9)

9 0.003512(21.2) 0.002485(26.7) 0.000575(55.9) 0.000053(202.5)

10 0.002440(27.1) 0.001781(30.1) 0.000481(61.7) 0.000038(244.9)

11 0.001519(34.8) 0.001248(38.0) 0.000425(58.5) 0.000049(200.7)

12 0.001046(46.5) 0.000839(45.1) 0.000278(87.7) 0.000045(177.9)

13 0.000669(55.1) 0.000526(58.9) 0.000248(81.0) 0.000053(160.3)

14 0.000380(71.1) 0.000376(67.9) 0.000139(96.6) 0.000049(168.7)

15 0.000214(89.3) 0.000263(80.7) 0.000109(129.4) 0.000026(286.0)

16 0.000135(118.1) 0.000150(93.6) 0.000075(150.0) 0.000026(286.1)

17 0.000098(134.7) 0.000139(145.3) 0.000113(129.1) 0.000015(339.1)

18 0.000087(152.0) 0.000049(185.1) 0.000023(317.8)

19 0.000049(168.7) 0.000068(173.5)

20 0.000038(200.0) 0.000026(247.8) 0.000030(229.1)

21 0.000019(300.0) 0.000019(300.0) 0.000038(244.8)

22 0.000015(339.1) 0.000026(319.5)

Note: The variances are given in parentheses and represent the standard deviations (±1σ) expressed in percent of the molar concentration.
There are 73 complexes that appeared no less than four times in the series of calculations involving 50 realizations (the total number
of Qn structons is equal to 0.5 × 106). The number of anion species observed in each realization is, on average, equal to 46 ± 3, and
the mean number of polymer particles amounts to 5321 ± 34.
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is insufficient for a good reproduction of the results at
mole fractions of ≤10–4.

As the gelation point of the silicate liquid is
approached, the total degree of polymerization of the

system increases rapidly. As a rule, the degree of poly-
merization is expressed as the ratio between the number
of bridging bonds and the total number of oxygen
bonds in the silicate matrix; that is,

(6)α Q1 2Q2 3Q3 4Q4+ + +( )/ 4 Q1 Q2 Q3 Q4+ + +( )[ ].=

 
Table 4.  Mole fractions of anionic complexes according to the results of 50 calculations for the second distribution of Qn

structons (Table 2, variant II)

Anion size i
Number of intramolecular closures j (cyclizations) of bonds

j = 0 (chains) j = 1 j = 2 j = 3 j = 4 j = 5

1 0.465760

2 0.160941

3 0.088948 0.005250

4 0.055388 0.008118 0.000417

5 0.039258 0.010479 0.001156 0.000062

6 0.026776 0.010370 0.001443 0.000193

7 0.018875 0.009172 0.001727 0.000206 0.000025

8 0.012355 0.007884 0.001995 0.000274 0.000031

9 0.008190 0.006434 0.001632 0.000336 0.000044

10 0.005774 0.004819 0.001692 0.000398 0.000056

11 0.003927 0.004148 0.001673 0.000393 0.000100

12 0.002607 0.003023 0.001252 0.000392 0.000050

13 0.001719 0.002268 0.001165 0.000386 0.000081

14 0.000964 0.001677 0.001091 0.000392 0.000087

15 0.000853 0.001310 0.000861 0.000336 0.000068 0.000025

16 0.000612 0.000910 0.000710 0.000317 0.000069

17 0.000318 0.000680 0.000654 0.000236 0.000094

18 0.000380 0.000561 0.000556 0.000237 0.000031

19 0.000174 0.000444 0.000386 0.000212 0.000087 0.000038

20 0.000075 0.000249 0.000324 0.000187 0.000099

21 0.000050 0.000261 0.000268 0.000131 0.000050 0.000043

22 0.000062 0.000119 0.000132 0.000143 0.000075

23 0.000063 0.000112 0.000118 0.000137 0.000031 0.000025

24 0.000094 0.000168 0.000100 0.000063

25 0.000088 0.000081 0.000125 0.000050

26 0.000050 0.000081 0.000063 0.000044

27 0.000050 0.000044 0.000037

28 0.000044 0.000062 0.000038

29 0.000031

30 0.000025 0.000025

31 0.000025

Note: There are 131 complexes that appeared no less than four times in the series of calculations involving 50 realizations (the total num-
ber of Qn structons is equal to 0.5 × 106). The number of anion species observed in each realization is, on average, equal to 74 ± 4,
and the mean number of polymer particles amounts to 3210 ± 41.
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Table 5.  Ensemble of polymer anionic complexes according to the results of 50 calculations for the third distribution of Qn

structons (Table 2, variant III)

Size i
Number of intramolecular closures j (cyclizations) of bonds

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

20

30

40

50

60

70

80
Note: There are 131 complexes that appeared no less than four times in the series of calculations involving 50 realizations (the total number

of Qn structons is equal to 0.5 × 106). Moreover, the calculations revealed 14 particles of size 81 ≤ i ≤ 139 corresponding to 9 ≤ j ≤16.
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For the third variant of calculations, the degree of
polymerization is α = 0.4875 (Table 2). This means that
almost half the silicon–oxygen bonds is represented by
Si–O–Si bridging bonds, which allow for an unlimited
growth of polymer complexes and the formation of
high-dimension structures. In this case, the tabular and
graphical representations of the total distribution of
model anions are complicated by the presence of high-
molecular complexes of size i ≥ 50 and a small number
of polymer particles involving up to 1500 silicon
atoms. For this reason, the mole fractions of individual
anions are not given in Table 5, which illustrates the
total distribution of particles of size i ≤ 80. This model
ensemble should be complemented by high-molecular

structures, such as the Si265 , Si413 ,

Si1009 , or Si1395  particles. Apparently, in
this case, it is possible to analyze the initial stages of
unlimited growth of polymer structures, i.e., the onset

of gelation.3 The formal representation and the evalua-
tion of weighted-mean characteristics of similar model
ensembles are possible in terms of the approach devel-
oped by Esin [7, 8], who proposed to use the summa-
tion of polyanions in the sequence corresponding to the

3 In our model, the gelation point corresponds to α = 0.5, which is
in agreement with the data obtained in [9, 18–20].

O762
464– O1197

742–

O2934
1832– O4035

2490–

 
Table 6.  Example of a separate calculation and mean characteristics of the model ensembles for variant III (Table 2)

Fifth calculation (among 50) Mean parameters of anion distribution

Particle Number x, mole 
fractions

Mean 
charge Mean size Particle x, mole 

fractions (±1σ) Mean 
size (±1σ)

SiO4 429 0.37599 –4.0 1.00 SiO4 0.4281 0.0187

Chains Chains

Si2O7 212 0.18580 Si2O7 0.1750 0.0154

Si3O10 101 0.08852 Si3O10 0.0696 0.0084

Total 461 0.40403 –9.7 3.87 Total 0.3683 0.0185 3.78 0.17

Rings Rings

Si3O9 2 0.00175 Si3O9 0.0054 0.0020

j = 1 110 0.09641 –22.2 11.12

j = 2 59 0.05171 –32.1 17.05 Total number
of rings (j = 1)

0.0845 0.0119 9.66 0.66

j = 3 21 0.01840 –47.8 25.91

j = 4 11 0.00964 –53.3 29.64

j = 5 11 0.00964 –61.6 34.82 Remaining
rings (j ≥ 2)

0.1191 0.0123

j = 6 6 0.00526 –98.0 54.00

j = 7 6 0.0526 –101.7 56.83

j = 8 4 0.00351 –108.0 61.00

j = 9 1 0.00088 –116.0 66.00 Total 1.00000 8.60 0.44

j = 10 5 0.00438 –152.0 85.00

j = 11

j = 12 1 0.00088 –278.0 150.00

j = 13 2 0.00175 –151.0 87.50

j = 14 3 0.00263 –200.0 113.33

j = 15 1 0.00088 –236.0 132.00

j = 16 1 0.00088 –206.0 118.00

Total 1141 1.00000 –18.0 8.76

Note: In separate calculations for the specified distribution of Qn structons, there appear single high-molecular species of size i ≥ 1000
with a number of closures j ≥ 100. This indicates the approach of the gelation point, at which polymer complexes are characterized
by unlimited growth.
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same number of cyclizations j (see vertical columns in
Tables 3–5). This permits one to compare more cor-
rectly the results of calculations at moderate (Fig. 2)
and high degrees α of polymerization of the system
[relationship (6)]. The results of this extension for one
of the calculations for the third variant of the distribu-
tion of Qn structons (the fifth realization characterized
by the absence of formation of strongly polymerized
complexes is chosen among 50 realizations) are pre-
sented in the left-hand side of Table 6. The results of
statistical processing for all 50 realizations are listed in
the right-hand side of Table 6. It can be seen from Table 6
that the method used for generalizing structural chemi-
cal information virtually does not affect the accuracy in

the reproducibility of Si  monomer and chain poly-
mer species dominant in the concentration.

CONCLUSIONS

Thus, a new statistical model was proposed for
describing an equilibrium structure of polymer anionic

O4
4–

complexes with the use of a specified number and a
known distribution of Qn structons in silicate melts. The
model is based on the representation of polyanions as a
sequence of Qn particles, i.e., monomers with different
numbers of bridging bonds (1 ≤ n ≤ 4). In the frame-
work of the model, an ensemble of polyanions is
described as a set of all possible linear, branched, and
cyclic silicon–oxygen polymer structures. Relation-
ships were proposed for calculating the probability of
growth and intramolecular cyclization of polymers as a
function of the content of Qn structons of different
types. In this case, the constraint is imposed on the
sequence of the interaction of Qn structons: two mono-
mers can be linked together only by a Si–O–Si bond.
The constraint is equivalent to the fact that the silicate
tetrahedra cannot be shared by edges or faces.

The proposed statistical model was used to develop
an algorithm for calculating the molecular-mass distri-
butions of silicate complexes of the general formula
(SiiO3i + 1 – j)2(i + 1 – j)–. According to this algorithm, the
structure of silicon–oxygen complexes is simulated by
saturating unsaturated bonds in the course of sequential
assembly of a polymer particle from randomly chosen
Qn structons. The polymer particle with all saturated
bonds is treated as a finished particle and added to the
model ensemble of polyanions. The Q0 structons are

interpreted as Si  ions and considered an indepen-
dent species of particles in the final ensemble of silicate
complexes. Within the given algorithm, the simulation
of the molecular-mass distribution of complexes is per-
formed using a random number generator and repre-
sents a variant of the statistical Monte Carlo method.

The algorithm for simulating the molecular-mass
distributions of polyanions was implemented in the
form of the STRUCTON computer program (version
1.1, 2006) intended for calculating the composition
and proportions of polyanions at different degrees of
polymerization of the system up to the gelation point
of the silicate liquid. The executable code was imple-
mented on personal computers. The input parameters
of the program are specified distributions of Qn struc-
tons. The distributions can be obtained experimentally
(from Raman and NMR spectroscopic data) or calcu-
lated theoretically. The special option of the STRUC-
TON program makes it possible to calculate the molec-
ular-mass distributions of polyanions in terms of the
equal reactivity principle with the use of the relative
fraction of nonbridging oxygen bonds as the input
parameter [34].

The testing calculations were performed for three
initial distributions of Qn particles corresponding to dif-
ferent degrees of polymerization 0.25 ≤ α ≤ 0.49 for the
model system containing 104 initial structons. The
results of the statistical simulation of the equilibrium
distribution of anions demonstrated that a limited
ensemble of polymer complexes is formed in the sys-
tem, so that the mean number of different species of

O4
4–

10–4
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Fig. 2. Molecular-mass distributions of chain (j = 0) and
ring (1 ≤ j ≤ 4) complexes according to the results of 50 cal-
culations with the STRUCTON program for variant II of
the distribution of Qn structons (Table 2). The total ensem-
ble of anions involves, on average, 3210 ± 41 polymerized
particles (from 104 initial Qn structons) representing more
than 130 different complexes of size 1 ≤ i ≤ 31. The pres-
ence of isomers (Table 1) is implicitly taken into account by
calculating the mean concentration of polymers of a specific
composition [relationship (2)] irrespective of their
geometry.
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complexes varies from 46 to 141. This correlates with
an increase in the mean size of anions from 1.87 to 8.60
and a decrease in the total number of polymer particles
in the model system by a factor of more than four (from
5320 to 1166).

The proposed statistical model and the first results
of the simulation of the molecular-mass distribution of
polyanions can be considered the first step on the road
to the construction of a more universal program that
provides a way of simulating polymer equilibria out-
side the gelation point and in the presence of other com-
plex-forming components. The possibility of combin-
ing the given algorithm with the formalism of the the-
ory developed by Toop and Samis [35] for MeO–
Me2O–SiO2 systems enables one to estimate the mole
fraction of O2– ions in the anion matrix for silicate melts
with different sets of modifier cations [34].
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