ТИТАНОСИЛИКАТЫ ЩЕЛОЧНЫХ МЕТАЛЛОВ – ПРОДУКТЫ САМООРГАНИЗАЦИИ НАНОКЛАСТЕРОВ, НАНОТРУБОК И НАНОЧАСТИЦ

С.В.Кривовичев*, В.Н.Яковенчук**

*Санкт-Петербургский государственный университет

**Геологический институт Кольского НЦ РАН

В последние годы все большее внимание привлекают к себе наночастицы и сформированные из них структуры: нанокристаллы, нанокластеры, нанонити, нанотрубки, тонкие пленки, сверхструктуры, построенные из нанообъектов, и др. Очень интересный класс объектов в этой связи представляют собой титано- и ниобосиликаты щелочных металлов, демонстрирующие широкие вариации типов структур, построенных на основе самоорганизации нанокластеров, нанонитей и нанотрубок.

Так, титаносиликатную основу кристаллической структуры юкспорита (Sr,Ba)₂ K₂ (Ca,Na)₁₄ (vac,Mn,Fe) {(Ti,Nb)₄ (O,OH)₄ [Si₆O₁₇]₂ [Si₂O₇]₃} (H₂O, OH)_n можно получить, сворачивая слой из TiO₆-октаэдров и диортогрупп Si₂O₇ в полярные нанотрубки диаметром 2 нм (рис. 1 и 2), подобно тому, как это происходит при формировании углеродных нанотрубок (Krivovichev et al., 2004а). После чего эти нанотрубки самоорганизуются в кристаллическую структуру, в качестве "цемента" которой выступают ионы щелочных и щелочноземельных металлов.

Структура шафрановскита K₂Na₃(Mn, Fe, Na)₄ [Si₉ (O, OH)₂₇] \cdot *n*H₂O представляет собой трехслойный пакет из кремнекислородных тетраэдров и MnO₆-октаэдров (рис. 3). Несоразмерность тетраэдрического и октаэдрического слоев приводит к напряжениям, которые могут компенсироваться либо модуляцией, либо разрывом силикатного слоя и образованием наноостровных комплексов нового типа (Krivovichev et al., 2004b): рис. 4.

Весьма интересны минералы ряда зорит-чивруайит, структура которых основана на пористом разорванном каркасе $[Si_6O_{17}]^{10}$ из кремнекислородных тетраэдров, внутри которого расположены стержни из связанных по вершинам октаэдров TiO_6 (рис. 5). В связи с присутствием этих стержней, структура зорита-чивруайита может рассматриваться как совокупность титан-оксидных нанонитей, погруженных в силикатную матрицу, – а это, как и в случае с юкспоритом, предполагает наличие нелинейно-оптических свойств.

Рис. 1. Кристаллическая структура юкспорита $(Sr,Ba)_2 K_2 (Ca,Na)_{14} (vac,Mn,Fe) \{(Ti,Nb)_4 (O,OH)_4 [Si_6O_{17}]_2 [Si_2O_7]_3 \}$ (H₂O, OH)_n (Krivovichev et al., 2004a). Цифрами обозначены различные позиции кремнекислородных тетраэдров и TiO₆-октаэдров.

Рис. 2. Формирование полярных юкспоритовых нанотрубок путем сворачивания слоя из октаэдров TiO₆ и диортогрупп Si₂O₇ (+ вставка дополнительных тетраэдров).

Рис. 3. Трехслойный пакет кристаллической структуры шафрановскита $K_2Na_3(Mn,Fe,Na)_4[Si_9(O,OH)_{27}]\cdot nH_2O$ (Krivovichev et al., 2004b).

Рис. 4. Изолированные островные комплексы [Si₁₃O₂₈(OH)9]¹³⁻ в структуре шафрановскита (Krivovichev et al., 2004b)

Рис. 5. Кристаллическая структура чивруайита Ca₄(Ti,Nb)₅[(Si₆O₁₇)₂[(OH,O)₅]·13-14H₂O (Men'shikov et al., 2006) с разорванным кремнекислородным каркасом и наностержнями из октаэдров TiO₆.

Образование всех перечисленных соединений осуществляется в ультраагпаитовых гидротермальных жилах за счет процессов катионного обмена, кластеризации наночастиц и их самоорганизации в кристаллические структуры путем присоединения дополнительных катионов. Интересно, что даже обычный графит образует в таких условиях наноконусы и нанотрубки, сформированные наворачиванием в виде рулона графитовых слоев. Многие из этих соединений легко декатионизируются, сохраняя каркас из нанотрубок, нанослоев и т.д., а вхождение в такую структуру других катонов (Sr, Tl, Cs и др.) ее стабилизирует. Последнее обстоятельство открывает новые возможности для создания стабильных в широком диапазоне условий катионообменников и "ловушек" для различных металлов, включая радиоактивные изотопы Sr и Cs.

Список литературы

Krivovichev S.V., Yakovenchuk V.N., Armbruster T., Döbelin N., Pattison P., Weber H.-P., Depmeier W. Porous titanosilicate nanorods in the structure of yuksporite, $(Sr,Ba)_2 K_2 (Ca,Na)_{14} (vac,Mn,Fe) {(Ti,Nb)_4 (O,OH)_4 [Si_6O_{17}]_2 [Si_2O_7]_3} (H_2O, OH)_n$, resolved using synchrotron radiation // American Mineralogist, 2004a, 89, 1561-1565

Krivovichev S.V., Yakovenchuk V.N., Armbruster T., Pakhomovsky Ya.A., Weber H.-P., Depmeier W. Synchrotron X-ray diffraction study of the structure of shafranovskite, $K_2Na_3(Mn,Fe,Na)_4[Si_9(O,OH)_{27}].nH_2O$, a rare manganese silicate from Kola peninsula, Russia // American Mineralogist, 2004b, 89, 1816-1825.

Men'shikov Yu.P., Krivovichev S.V., Pakhomovsky Ya.A., Yakovenchuk V.N., Ivanyuk G.Yu., Mikhailova J.A., Armbruster T., Selivanova E.A. Chivruaiite, $Ca_4(Ti,Nb)_5[(Si_6O_{17})_2[(OH,O)_5]\cdot 13-14H_2O$, a new mineral from hydrothermal veins of Khibiny and Lovozero alkaline massifs // American Mineralogist. 2006. Vol. 91. No. 5–6. P. 922–928.