THERMODYNAMIC PROPERTIES OF CaO-Al₂O₃ MELTS

Shornikov S.I.

Center of Isotopic Research, Karpinsky All-Russian Geological Institute (VSEGEI), Saint-Petersburg

s shornikov@hotmail.com

<u>Key words</u>: $CaO-Al_2O_3$ system, thermodynamic properties of melts, theory of ideal solutions of complex components

Thermodynamic properties of the $CaO-Al_2O_3$ are of interest in ceramic and cement technologies, as well as in metallurgy and material science. The high-alumina region of this system is especially interesting for the cosmochemical study of the selective evaporation and condensation of the primitive solar nebula [1].

This work presents the calculation of the thermodynamic properties of the $CaO-Al_2O_3$ melts at temperature from 1800 to 2500 K in the framework of the ideal associated solutions theory. The simplified lattice model accounts for the intermolecular interactions using the semi-phenomenological parameters, which were determined on the base of the experimental thermodynamic data [2, 3].

In contrast to the previous calculations made in the frameworks of the sublattice and quasichemical models [4, 5], the initial thermodynamic data considers 12 condensed phases (8 solid and 4 liquid) and 12 gas species; these components are listed in the Table.

The same Table gives the calculated values of the Gibbs formation energies for the compounds and the vapor species over the CaO-Al₂O₃ system, which are used for the calculation of the equilibrium conditions in the system at a given composition and temperature. The equation solution for the integral Gibbs energy for the system studied was found by the widely used approach, namely the Gibbs energy minimization method [6].

The obtained results are shown in Figure and compares with the experimental data obtained by the mass spectrometric Knudsen effusion method in the temperature range 1800-2100 K [7, 8]. As seen from the figure, the deviations in the calculated oxide activities was less than 5 %; resulting in the errors in the Gibbs energies of the melts formation in the CaO-Al₂O₃ system of 1 kJ/mole with respect to the experimental data heaving the errors of the same order of magnitude.

 $\label{eq:Table} \textbf{Table}$ The Gibbs energies of formation of condensed phases and vapor species over CaO-Al₂O₃ melts at 1933 K calculated in the present study on the base of the experimental data [2, 3]

Condensed phases				Gas phase	
Solid phases	$\Delta_f G_{1933}$,	Liquid phases	$\Delta_f G_{1933}$,	Vapor species	$\Delta_f G_{1933}$,
	kJ/mole		kJ/mole		kJ/mole
Al_2O_3	-1055.518	Al_2O_3	-1037.330	Al	92.545
CaO	-428.777	CaO	-416.203	AlO	-70.953
CaAl ₂ O ₄	-1545.027	CaAl ₂ O ₄	-1546.931	AlO_2	-99.424
CaAl ₄ O ₇	-2616.481			Al_2	199.593
CaAl ₁₂ O ₁₉	-6849.686			Al ₂ O	-279.329
$Ca_3Al_2O_6$	-2417.464			Al_2O_2	-388.134
Ca ₅ Al ₆ O ₁₄	-5527.788			Al_2O_3	-410.309
$Ca_{12}Al_{14}O_{33}$	-13024.521	$Ca_{12}Al_{14}O_{33}$	-13088.549	Ca	-15.231
				CaO	-71.497
				O	126.135
				O_2	0.000
				O_3	269.935

Fig. Activities of Al_2O_3 (a), CaO (b), and the Gibbs energies of formation of the melts of the $CaO-Al_2O_3$ system (c) at 1833 (1, 5), 1933 (2, 6), 2033 (3, 7), and 2060 K (4, 8), obtained by mass spectrometric method (1-3 – in [7], 4 – in [8]) and calculated in the present study (5-8).

References

- 1. Yakovlev O.I., Dikov Yu.P., Gerasimov M.V. // Geokhimiya. 2000. № 10. P. 1027-1045.
- 2. Glushko V.P., Gurvich L.V., Bergman G.A., Veitz I.V., Medvedev V.A., Khachkuruzov G.A., Yungman V.S. Thermodynamic Properties of Individual Substances / Ed. V.P. Glushko. M.: Nauka. V. 1-4. 1978-1982.
- 3. Shornikov S.I., Stolyarova V.L., Shultz M.M. // Russian J. Phys. Chem. 1997. V. 71. № 1. P. 23-27
- 4. Hallstedt B. // J. Amer. Ceram. Soc. 1990. V. 73. № 1. P. 15-23.
- 5. Eriksson G., Pelton A.D. // Metall. Trans. B. 1993. V. 24. № 4. P. 807-816.
- 6. Saxena S.K. // Adv. Phys. Geochem. 1982. V. 2. P. 225-241.
- 7. Shornikov S.I., Stolyarova V.L., Shultz M.M. // Russian J. Phys. Chem. 1997. V. 71. № 1. P. 19-22.
- 8. Allibert M., Chatillon C., Jacob K.J., Lourtau R. // J. Amer. Ceram. Soc. 1981. V. 64. № 5. P. 307-314.

Electronic Scientific Information Journal "Herald of the Department of Earth Sciences RAS" № 1(21) 2003 Informational Bulletin of the Annual Seminar of Experimental Mineralogy, Petrology and Geochemistry — 2003 URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2003/informbul-1_2003/magm-11e.pdf Published on July 15, 2003