Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» №1(21)′2003 URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2003/informbul-1 2003/term-9.pdf

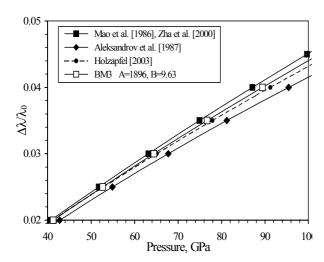
ПЕРЕСМОТРЕННАЯ РУБИНОВАЯ ШКАЛА ДАВЛЕНИЙ

П.И.Дорогокупец - Институт земной коры СО РАН, Иркутск dor@crust.irk.ru

A.P.Оганов — ETH Zurich, CH-8092 Zurich, Switzerland a.oganov@mat.ethz.ch

Рубиновая шкала давлений, в которой давление измеряется по сдвигу R_1 линии люминесценции рубина, является одним из наиболее распространенных стандартов давления в экспериментах с алмазными наковальнями при изучении PV соотношений минералов на комнатной изотерме. До настоящего времени наиболее популярной была калибровка этой шкалы давлений, выполненная Mao et al. [1], которые измерили сдвиг R_1 линии люминесценции рубина в аргоновой среде до давления 80 ГПа. Давление определялось по комнатным изотермам Cu и Ag, которые были рассчитаны Carter et al. [2] по ударным данным. В результате в литературе распространение получила шкала давлений в форме

$$P = \frac{A}{B} \left[\left(1 + \frac{\lambda}{\lambda_0} \right)^B - 1 \right],\tag{1}$$


где A=1904 ГПа, B=7.665.

Практически в то же время Александровым и др. [3] была опубликована значительно отличающаяся шкала высоких давлений, основанная на "априорном" уравнении состояния алмаза. Александров и др. [3] в алмазной ячейке в гелиевой среде провели одновременные измерения сдвига R_1 линии люминесценции рубина и спектров комбинационного рассеяния света первого порядка в алмазе до сжатия $x=V/V_0=0.93$. Эта шкала с параметрами A=1918 ГПа, B=11.7 начинает отличаться от шкалы Мао et al. [1] при давлениях больше 20 ГПа и приводит к существенным различиям в области давлений выше 50 ГПа (рис. 1).

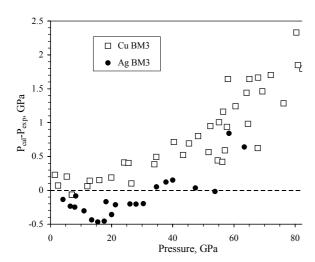
Хотя Zha et al. [4] подтвердили шкалу Mao et al. [1], однако недавно Holzapfel [5] на основании детального анализа современных рентгеновских, ультразвуковых, теоретических и ударных данных для алмаза предложил новую рубиновую шкалу в виде

$$P = \frac{A}{B+C} \left[\exp\left(\left(\frac{B}{C} + 1 \right) \left(1 - \frac{\lambda}{\lambda_0} \right)^{-C} \right) - 1 \right], \tag{2}$$

где A=1820 ГПа, B=14, C=7.3.

Рис.1 Зависимость сдвига R_1 линии люминесценции рубина от давления по разным рубиновым шкалам давления.

Для выяснения причин такого расхождения между шкалами [1], [3] необходимо проверить комнатные изотермы Cu и Ag из Carter et al. [2], которые рассчитаны ПО ударным данным. только настоящему времени расширен диапазон ударных данных по меди и серебру, что В сочетании ультразвуковыми, рентгеновскими и термохимическими данными позволяет получить надежное уравнение состояния этих металлов. Поэтому цель нашей работы состоит в построении уравнения состояния Си и Ад на основе современных данных и сравнении рассчитанных комнатных изотерм c Carter et al. [2]. Затем из данных Mao et al. [1] рассчитаем объем Си


and Ag, откуда можно пересмотреть давление рубиновой шкалы давлений.

Нами построены термические уравнения состояния Cu и Ag на основе современных термохимических, рентгеновских, ультразвуковых, теоретических и ударных данных с

использованием формализма из [6]. Параметры уравнений состояния Cu и Ag с холодной изотермой по Берч-Мурнахану представлены в табл. 1. Отклонения рассчитанных функций от экспериментальных измерений составляют 0.5-1.5 % во всем *PVT* интервале. Поэтому далее будем сравнивать рассчитанные комнатные изотермы Cu и Ag с данными Carter et al. [2]. На рис. 2 показано различие между вновь рассчитанным давлением на комнатной изотерме и рекомендованным Carter et al. [2] давлением.

Из этого рисунка следует, что уравнения состояния серебра по нашим данным и из [2] близки, в то же время различия по уравнениям состояния меди существенны и достигают 2 ГПа при давлении 70 ГПа. Таким образом, из рис. 2 следует, что рубиновая шкала Мао et al. [1] занижает давление при заданном сдвиге линии R_1 рубина до 2 ГПа.

Полученные давления при заданном сдвиге линии R_1 рубина можно аппроксимиро-

Рис.2 Отклонение давления на комнатной изотерме по предложенным уравнением состояния Сu и Ag от давления Carter et al. [2].

вать уравнением Берча-Мурнахана 3-го порядка с параметрами A=1896, B=9.63. Здесь параметр A был фиксирован в соответствии с начальным наклоном для квазигидростатических условий [7]. Полученная зависимость сдвига линии R_1 рубина от давления дает среднее давление между шкалой Mao et al. [1] и независимой шкалой Holzapfel [5].

Таким образом, построены уравнения состояния меди и серебра, которые в пределах экспериментальной ошибки согласуются с ударными, ультразвуковыми, рентгеновскими и термохимическими данными в области температур от $10-20~\rm K$ до температуры плавления и до сжатия x=0.6. Из сравнения рассчитанной комнатной изотермы с рекомендованной Саrter et al. [2] изотермой выяснилось, что последняя отклоняется от нашей до 2

ГПа при давлении 70 ГПа, что влечет за собой систематическую ошибку в рубиновом стандарте давления Мао et al. [1]. Рекомендована новая шкала зависимости сдвига линии R_1 рубина от давления, которая является промежуточной между шкалой Мао et al. [1] и шкалой Holzapfel [5].

Таблица 1 Параметры уравнений состояния меди и серебра

Параметры	Cu	Ag
V_0 , cm ³	7.113	10.272
K_0 , GPa	133.9	100.0
<i>K</i> '	5.24	5.99
Θ_{B10} , K	47.24	120.72
d_1	1.990	39.325
m_{B1}	0.001	1.121
Θ_{B20} , K	146.57	112.63
d_2	6.450	4.266
m_{B2}	0.471	0.436
Θ_{E1o} , K	286.65	191.86
m_{E1}	1.549	1.443
Θ_{E2o} , K	181.32	_
m_{E2}	0.980	_
γ_0	1.975	2.439
	1.100	1.655
γ _∞ β	2.722	5.089
a_0, K^{-1}		-15.95E-6
g		6.495
e_0, K^{-1}	10.66E-6	23.27E-6

Работа выполнена при финансовой поддержке РФФИ (по проектам № 02-05-64062 и 02-07-90324)

Литература

- 1. Mao H.K., Xu J., Bell P.M. // J. Geophys. Res. 1986. V. 91B, 4673–4676.
- 2. Carter W.J., Marsh S.P., Fritz J.N. McQueen, R.G. // NBS Spec. Publ. 1971. V 326, 147–158.
- 3. Александров И.В., Гончаров А.Ф., Зисман А.Н., Стишов С.М. // ЖЭТФ 1987. Т. 93, 680-691.
- 4. Zha C.-S., Mao H.-K., Hemley R.J. // Proc. Nat. Acad. Sci. 2000. V. 97, 13494-13499.
- 5. Holzapfel W.B. // J. Appl. Phys. 2003. V. 93, P. 1813-1818.
- 6. Dorogokupets P.I. // Geochemistry International. 2002. V. 40, s132-s144.
- 7. Piermarini G.J., Block S., Barnett J.D., Forman R.A.// J. Appl. Phys. 1975. V. 46, 2774–2780.

Вестник Отделения наук о Земле РАН - №1(21) 2003

Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2003 года (ЕСЭМПГ-2003)

URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2003/informbul-1_2003/term-9.pdf Опубликовано 15 июля 2003 г.

© Отделение наук о Земле РАН, 1997 (год основания), 2003 При полном или частичном использовании материалов публикаций журнала, ссылка на "Вестник Отделения наук о Земле РАН" обязательна