Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» №1(22)′2004 *URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2004/informbul-1/hydroterm-13.pdf*

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ УСТОЙЧИВОСТИ AuS_(тв) И ГИДРОСУЛЬФИДНЫХ КОМПЛЕКСОВ ЗОЛОТА ПРИ 25°С, 16ар ПУТЕМ ИЗМЕРЕНИЯ РАСТВОРИМОСТИ ЗОЛОТА И Ag-Au СУЛЬФИДОВ

Баранова Н.Н. (ГЕОХИ РАН), **Тагиров Б.Р.** (ИГЕМ РАН, LMTG,Тулуза Франция), **Зотов А.В.** (ИГЕМ РАН), **Банных Л.Н.** (ГЕОХИ РАН)

<u>Ключевые слова:</u> золото, растворимость, гидросульфидные комплексы, термодинамические свойства

Литературные данные по устойчивости гидросульфидных комплексов Au (AuHS $^{\circ}_{\text{((p-p)}}$ и Au(HS) $_2$) при обычной температуре основаны на экспериментах по растворимости Au₂S_(тв) [1]. Однако, термодинамические свойства для Au₂S_(тв) характеризуются большими расхождениями (так $\Delta_f G^{\circ}_{298}$ Au₂S_(тв), приводимые в [2] и[3], равны 28,7±10,5 кдж/моль и 10,8±8,4 кдж/моль соответственно). Поэтому, целью настоящего исследования является определение $\Delta_f G^{\circ}_{298}$ для метастабильного Au₂S_(тв) и гидросульфидных комплексов золота путем измерений растворимости металлического золота и Ag-Au-сульфидов, термодинамические свойства которых определены[4].

Для экспериментов по растворимости и синтеза сульфидов (синтез сульфидов проведен Е.Г.Осадчим, ИЭМ РАН) использованы Аи- сетка и фольга чистоты 99.95% Ад- фольга и S чистоты 99,99%. Ag₂S был синтезирован из элементов в вакуумированных запаянных кварцевых трубках при 120-240°C. Рентгенограмма синтезированного Ag₂S соответствует акантиту (ICPDS карта 14-00-72). AgAuS (петровскаит) и Ag_3AuS_2 (айтенбогардит) готовились взаимодействием 1-1,2г Ад-Аи сплава (электрума) и серы. Электрум необходимого состава был синтезирован плавлением небольших кусочков золота и серебра в кварцевых ампулах в высокотемпературном кислородно-газовом пламени. Полученный сплав раскатывался до толщины ~ 0,2мм и затем резался на маленькие кусочки $\sim 0,5$ х2мм. Взвешенное количество кусочков электрума и стехиометрическое количество серы помещалось в кварцевую трубку. Синтез проводился в горизонтальной трубчатой печи. Реакция с серой протекает при ~400°C в течение 2-3 дней и еще 1-2 дня при 520°C. Затем ампула остывала в печи и вскрывалась. Чтобы устранить возможную гетерогенность полученный материал измельчался, помещался в кварцевую трубку вместе с 1-5мг серы, и процедура синтеза повторялась. Избыток серы кристаллизовался при охлаждении на свободном конце ампулы. Рентгенограмма полученных продуктов соответствует по ICPDS петровскаиту-карта 19-1146 и айтенбогардиту – карта 20-461.

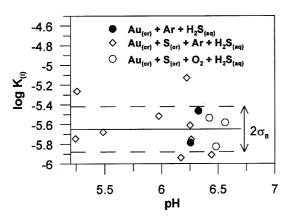
Были проведены три серии экспериментов по растворимости с использованием (I) металлического золота, (II) смесей кристаллических $Ag_2S-Ag_3-AuS_2$ и (III) $Ag_3AuS_2-AgAuS$. Эксперименты проводились в ИГЕМ РАН и LMTG (Тулуза, Франция). Растворимость измерялась в сульфидных растворах ($m(H_2S)\sim0.03-0.12$) при $24\pm2^{\circ}C$ и $pH\sim4.7-7.5$ с использованием запаянных стеклянных ампул в атмосфере аргона. В экспериментах с металлическим золотом (серия I) необходимо надежно контролировать окислительно—восстановительные условия. Эти условия могут изменяться под влиянием осаждения следов серы во время подготовки ампул и при их запаивании. Чтобы установить влияет ли присутствие элементной серы на растворимость Au, эксперименты в серии (I) проводились в 3 под-сериях: в насыщенных сероводородом растворах с добавкой и без добавки кристаллической серы и в растворах с серой, осевшей во время запаивания ампул на воздухе.

Были получены следующие константы равновесия реакций:

Концентрация H_2 , необходимая для расчета $K_{(I)}$, получена из данных по растворимости золота согласно стехиометрии этой реакции. Величины $K_{(I)}$ и концентрации золота в равновесии со смесью Ag_3AuS_2 - AgAuS как функция pH показана на рис.1 и 2 соответственно. Рис.1 показывает, что присутствие элементной серы не влияет на величину $K_{(I)}$ и, следовательно, метод расчета концентрации H_2 корректен. Независимость рассчитанных значений $K_{(I)}$ от pH раствора

(рис.1) и характер кривой растворимости, наблюдаемой для серии (III) (рис.2) убедительно показывает, что стехиометрия реакций реакции (I) и (III) правильна.

Было найдено, что $\log K_{(II)} = -5,65\pm0,25$, $\log K_{(II)} = -4,47\pm0,30$ и $\log K_{(III)} =$


 $-4,03\pm0,25$. Величины $K_{(III)}$ и $K_{(III)}$, определенные в двух различных лабораториях (ИГЕМ и LMTG), согласуются в пределах 0,1 логарифмической единицы. Комбинация термодинамических свойств Ag-Au сульфидов из [4] с $K_{(III)}$, и $K_{(III)}$, полученными в настоящем исследовании, дает log $K_{(Au(HS)_2^-)}$ = -5,19±0,35 и -5,31±0,35, соответственно. Таким образом, наблюдается

хорошее согласие между $K_{(Au(HS)_2^-)}$, полученными из данных по растворимости золота и Ag-

Au сульфидов. Согласно этому, результаты трех экспериментальных серий, (включающих металлическое золото (I) и Ag-Au сульфиды (II) и (III)) дают среднюю величину log $K_{(Au(HS)_2^-)}$ = -5,38 \pm 0,25. Эта величина в комбинации с константами равновесия реакций рас-

творимости $Au_2S_{\text{(тв)}}$ ($Au_2S_{\text{(тв)}}$ + 3 HS^- + H^+ = $2Au(HS)_2^-$ и $Au_2S_{\text{(тв)}}$ + HS^- + H^+ = $2AuHS^o_{\text{(p-p)}}$, измеренными при 25°C в [I]), дают Δ_f G^o_{298} ($Au_2S_{\text{(тв)}}$) = 19,41±1,50 кдж/моль и $logK_{\text{(AuHS}}^o)$ = - 10,98±0,25 для реакции:

 $Au_{(TB)} + H_2S^{o}_{(p-p)} = AuHS^{o}_{(p-p)} + 0.5H_{2(r)} K_{(AuHS)}$

-5.5
-6 - Ag₃AuS₂+AgAuS
m(H₂S)=0.1

-7 - Bg
-7.5 - -8
-8.5
-8.5
-8.5
-8.5
-8.5
-8.5
-9.8

Рис.1. Логарифм константы равновесия (I) (серия I) как функция рН. Символы представляют величины, рассчитанные из экспериментальных данных по растворимости, сплошная линия –среднее значение $\log K_{(I)}$, интервал, показанный пунктирными линиями, соответствует стандартному отклонению ($\pm 0,25$) \log единицы).

Рис.2. Концентрация золота, измеренная в равновесии со смесью Ag_3AuS_2 -AgAuS (серия(III), проведенная в Тулузе), $m(H_2S) \sim 0,1$. Символы представляют экспериментальные данные, сплошная линия рассчитана с использованием $logK_{(III)}$ =-4,03.

Константы устойчивости $AuHS^{o}_{(p-p)}$ и $Au(HS)_{2}^{-}$, полученные в настоящем исследовании, будут в дальнейшем рассмотрены совместно с литературными данными для более высоких давлений и температур для расчета термодинамических характеристик этих комплексов.

Мы выражаем благодарность Е.Г.Осадчему за синтез сульфидов. Работа выполнена при финансовой поддержке РФФИ грант 03-05-64804.

Литература

- 1. Renders P.Y., Seward T.M. (1989). Geochim. Cosmochim. Acta 53. PP. 245-253.
- 2 Barton M.D.and Skinner B.J. (1979). In: Geochemistry of hydrothermal ore deposits, H.L. Barnes, Ed., Second Edition, Wiley& Sons, New York.
- 3 Barton M.D. (1980). Econ. Geol. 75. PP. 303-316.
- 4. *Panno O.A.*, *Тагиров Б.Р. Осадчий Е.Г.* Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН», №1(21)'2003. *URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2003/informbul-1/hydroterm-13.pdf*

Вестник Отделения наук о Земле РАН - №1(22)'2004 Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2004 года (ECЭМПГ-2004) URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2004/informbul-1/hydroterm-13.pdf

Опубликовано 1 июля 2004 г

© Вестник Отделения наук о Земле РАН, 1997 (год основания), 2004

При полном или частичном использовании материалов публикаций журнала, ссылка на "Вестник Отделения наук о Земле РАН" обязательна