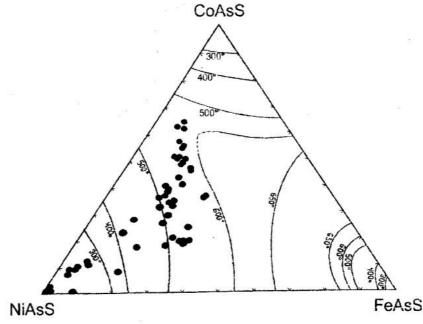
## ABOUT APPLICABILITY OF EXPERIMENTAL DATA FOR DRY SYSTEMS TO THE ANALYSIS OF FORMATION CONDITIONS OF NATURAL HYDROTHERMAL ASSOCIATIONS

Gritsenko Y. D. (MSU geol. dept., Russia)

Yulka-gricenco@mail.ru; fax: (095) 939- 26-02; ph.: (095) 939-49-58

Key words: Arsenidies, sulphoarsenides, synthesis, temperature of education, hydrothermal veins

The data received for synthesis of Ni-Co-Fe arsenidies [1, 2, 3] and sulphoarsenides [4] in dry systems are used for an estimation of temperatures education of natural hydrothermal associations containing these minerals [5,6].


Synthesis cubic Ni-Co sulphoarsenides [4] shows, that arising in system CoAsS-NiAsS-FeAsS to 500°C the solid solutions are formed by two isolated fields of compositions: with prevalence Co and with prevalence Ni. With increase of temperature up to 650°C, when solid solutions between Co, Ni and Fe becomes better, the compositions between them are synthesized, i.e. there is a series of continuous solid solutions with education of a uniform field of the significant area (fig. 1). In natural high-temperature deposits with Ni-Co (Illimaussaq alkalin intrusion in South Greenland, in Cr-Ni-ores from Malaga Province, Spain and Northern Morocco) are known (Fe, Co) –rich gersdorffite and Ni-rich cobaltite [7, 8].

Cubic sulphoarsenides are developed in hydrothermal angidrite- carbonate veins of Norilsk ore field. They are gersdorffite, Co–rich gersdorffite and Ni-rich cobaltite (fig. 1). Sulphoarsenides form detached of allocation or enter into structure of complex - zone antimonide - arsenidic mineralization association. The induction sides of joint growth of antimonide - arsenidic mineralization association with veins carbonate. Parameters of formation arsenidic - carbonate veins are determined by study of air- liquid inclusions in calcite are  $T = 216 - 127^{0}$  C, P = 0.9 - 0.1  $\kappa \delta$ . Formation temperature of calcite associatining with arsenidic mineralization is  $120-165^{0}$ C[9]; formation temperature of dolomite - 90- $145^{0}$ C [10].

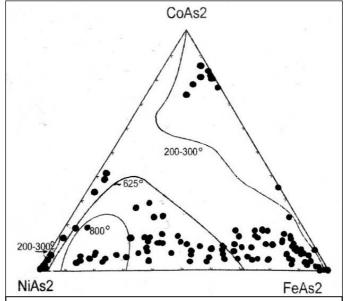
I.e. formation temperature of arsenidic - carbonate veins in Norilsk ore field does not exceed

220°C. Sulphoarsenides of similar compositions, on the data of synthesis in dry systems, are formed at temperature above 500°C.

Rhombic diarsenides are allocated minerals - solid solutions series: loellingite FeAs<sub>2</sub>- safflorite CoAs<sub>2</sub>; rammelsbergite NiAs<sub>2</sub> safflorite CoAs2 and rammelsbergite NiAs2 - loellingite FeAs<sub>2</sub>. Usually diarsenides contain all three elements of a triad, with prevalence one or two of Synthesis them. ofdiarsenides in dry systems at temperature 800 °C [1] has revealed extensive area of solid solutions, though complete solid solutions in this case were not observed (Fig. 2). The significant break of solid solutions between NiAs<sub>2</sub> and FeAs<sub>2</sub> is



**Fig. 1.** Chemical compositions of the analyzed sulphoarsenides of hydrothermal angidrite - carbonate veins of Norilsk ore field in the system Co-AsS-NiAsS-FeAsS. We have also represented the experimentally determined extent of the immiscibility region at 300, 400, 500, 600 and 650°C.


observed at synthesis of diarsenides at 625  $^{0}$ C [2]. 2 isolated fields of compositions: rammelsbergite – loellingite and rammelsbergite – Co- rich rammelsbergite are formed at  $\sim 300 \, ^{0}$ C [3].

Formation temperature of hydrothermal arsenidic - carbonate veins in Norilsk ore field are deter-

mined by study of air- liquid inclusions in calcite is 216 - 127°C. These veins contain solid solution series rammelsbergite – loellingite, Co - rich rammelsbergite and Fe - rich safflorite (fig. 2). Diarsenides of similar compositions, on the data of synthesis in dry systems, are formed at temperature above 800°C [1].

Thus, the temperature estimations of hydrothermal education of associations with Ni-Co-Fe arsenides and sulphoarsenides which has been carried by the data for experimental synthesis of dry systems are not correct.

Financial support was provided by RFBR, grant № 01-05-64051



**Fig. 2**. Chemical compositions of the analyzed diarsenides of hydrothermal angidrite- carbonate veins of Norilsk ore field in the system CoAs<sub>2</sub>-NiAs<sub>2</sub>-FeAs<sub>2</sub>. We have also represented the experimentally determined extent of the immiscibility region at 200-300, 625 and 800°C.

## References

- 1. Rosenboom Eugene H. Co-Ni-Fe diarsenides: compositions and cell dimenions //American mineralogist, V. 48, 1963. PP. 271-293.
- 2. *Gervilla F., Ronsbo J.* New data on (Ni, Fe, Co) diarsenides and sulfarsenides in chromite niccolite ores from Malaga Province, Spain // Neues Jahrb. Mineral., Monatsh., 1992. PP. 193-206.
- 3. *Radcliffe D., Berry L.G.* Clinosafflorite: a monoclinic polymorphe of safflorite // Can. Mineral. 1971. V.10. N 5.
- 4. *Klemm D.D.* Synthesen und analysen in den Dreiecksdiagrammen FeAsS-CoAsS-NiAsS und FeS<sub>2</sub>-CoS<sub>2</sub>-NiS<sub>2</sub>// Neues Jb. Mineral. Abhandl., 1965. Bd. 103, Hf. 3.
- 5. Гамянин Г.Н., Лескова Н.В., Рябева Е.Г. Сульфоарсениды никеля и кобальта месторождения Эргалах // Минералогия и геохимия производных гранитоидного магматизма. Якутск, 1981. СС. 34-41.
- 6. *Боришанская С.С., Виноградова Р.А., Крутов Г.А.* Минералы никеля и кобальта (систематика, описание и диагностика). М.: Изд-во МГУ, 1981. 224 С.
- 7. *Oen I.S., Burke E.A.J., Kieft C., Westerhof A.B.* Ni-arsenides, Ni-rich loellingite and (Fe, Co) rich gersdorffite in Cr-Ni-ores from Malaga Province, Spain // Neues Jaheb. Mineral. Abh., 1971, 115, № 2. PP. 123-139.
- 8. *Gervilla Fernando, Leblanc M., Torres-Ruiz., Hach-Ali P.F.* Immiscibility between arsenide and sulfide melts a mechanism for the concentration of noble metals // Can. Miver.-1996. V. 34. № 3. PP. 485-502.
- 9. Дистлер В.В., Лапутина И.П., Смирнов А.В., Балбин А.С. Арсениды, сульфоарсениды никеля, кобальта и железа Талнахского рудного поля // Минералы и парагенезисы минералов эндогенных месторождений. Л.: Наука, 1975. СС. 61-74.
- 10. Борисенко А.С., Лебедев В.И., Тюлькин В.Т. Условия образования кобальтовых месторождений. Новосибирск: Наука, 1984. 172 С.

Electronic Scientific Information Journal "Herald of the Department of Earth Sciences RAS" № 1(22) 2004 Informational Bulletin of the Annual Seminar of Experimental Mineralogy, Petrology and Geochemistry – 2004 URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2004/informbul-1 2004/hydroterm-15e.pdf