THE ENTHALPY OF FORMATION OF NATURAL FERRIERITE

Melchakova L.V., Ogorodova L.P., Kiseleva

M.V.Lomonosov Moscow State University, Russia *lmelchak@geol.msu.ru*; Phone: (095) 939-13-49

Key words: thermochemistry, calorimetry, enthalpy of formation, zeolite, ferrierite

The natural hydrothermal zeolite ferrierite having the composition (Ca_{1.20}Mg_{0.48}Na_{2.52}K_{0.30})[Al_{6.12}Fe_{0.06}Si_{29.82}O₇₂]17.34H₂O (Tedzami, Georgia) was an object of experimental thermochemical investigation on high temperature heat-flux Tian-Calvet microcalorimeter. The standard enthalpy of formation was obtained by high-temperature solution calorimetry in molten 2PbOB₂O₃ at T=973 K. The "transposed temperature drop solution calorimetry" method was used to measure the sum of enthalpy increment and enthalpy of solution of zeolite, $[H^{\circ}(973 \text{ K})-H^{\circ}(298.15 \text{ K})]$ $+ \Delta_{sol}H^{o}$ (973 K)]=2841.9 ± 38.8 kJ/mol. The enthalpy of formation from oxides was calculated using experimental data on [$H^{\circ}(973 \text{ K})-H^{\circ}(298.15 \text{ K}) + \Delta_{sol}H^{\circ}(973 \text{ K})$] for ferrierite and constituent oxides (table): $\Delta_{\rm f} H^{\rm o}_{\rm ox}(298.15 \text{ K}) = -801 \pm 58 \text{ kJ/mol}.$

Table. Calorimetric data for constituent oxides used to calculate the enthalpies of formation of ferrierite (kJ/mol)

Oxide	$[H^{\circ}(973 \text{ K})-H^{\circ}(298.15 \text{ K}) + \Delta_{\text{sol}}H^{\circ}(973 \text{ K})]$	$-\Delta_{\rm f} H^{\rm o}_{\rm el}(298.15 {\rm ~K})$
Na ₂ O(s)	-111.8±0.9	414.8±0.3
$K_2O(s)$	-193.7±1.1	363.2±2.1
MgO(s)	36.38±0.59	601.6±0.3
CaO(s)	-21.78 ±0.84	635.1±0.9
α -Al ₂ O ₃ (s)	107.38±0.59	1675.7±1.3
$Fe_2O_3(s)$	171.59±1.88	826.2±1.3
SiO ₂ (quartz)	39.43±0.21	910.7±1.0
$H_2O(l)$	40.9±2.5	285.8±0.1

The enthalpy of formation of ferrierite from the elements was determined using reference data [1] on $\Delta_{\rm f} H^{\rm o}_{\rm el}(298.15 \text{ K})$ of oxides (table): $\Delta_{\rm f} H^{\rm o}_{\rm el}(298.15 \text{ K}) = -39694\pm66 \text{ kJ/mol}$. At first the thermodynamic characteristics of natural ferrierite were obtained.

Reference

1. *Robie R.A. Hemingway B.S.* Thermodynamic properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascal) Pressure and at Higher Temperatures // U.S. Geol. Surv. Bull. 1995. N. 2131. 462 p.

Electronic Scientific Information Journal "Herald of the Department of Earth Sciences RAS" № 1(22) 2004 Informational Bulletin of the Annual Seminar of Experimental Mineralogy, Petrology and Geochemistry – 2004 URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2004/informbul-1_2004/mineral-7e.pdf Published on July, 1, 2004

© Herald of the Department of the Earth Sciences RAS, 1997-2004 All rights reserved