POTENTIOMETRIC STUDY OF THE STABILITY CONSTANTS OF CADMIUM CHLORIDE COMPLEXES FROM 1 TO 1000 BAR AT 25°C Bazarkina E.F., (MSU Geol. Dep., Russia) elenabaz@igem.ru

Zotov A.V. (IGEM RAS) azotov@igem.ru; Phone: (495) 230-82-31

Potentiometric measurements have been performed using an isothermal cell with liquid junction. A solid contact Cd-selective electrode ("Niko-analit") and a specially designed reference electrode [1] were used. Measurements were performed in solutions of constant $Cd(NO_3)_2$ concentration (0.01*m*) and variable concentration of KCl (0, 0.025, 0.53 and 1.4*m*) at 25°C and pressure from 1 to 1000 bars.

The electrodes were calibrated using Cd (NO₃)₂ solutions at pressures of 1-1000 bars and 25°C. At all pressures, the calibration data (*E*, vs. pCd) define a straight line close to theoretical Nernstian slope $(30\pm0.5\text{mV/pCd})$. *E*° decreases by $10\pm0.5\text{mV}$ with a pressure increase from 1 to 1000 bar (Fig.1).

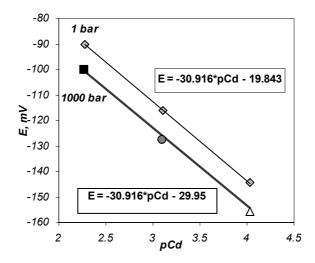


Fig.1. Calibration curves for the Cd-selective electrode for 1 and 1000 bar pressures at 25°C.

In order to verify the electrode system, a 0.01m Cd(NO₃)₂ solution was first titrated with a KCl solution and cadmium chloride stability constants (β_1 , β_2 , β_3 , β_4) were determined. The obtained values of stability constants are in a good agreement with previous estimates (Tab. 1.).

Table1. Calculated stepwise constants of cadmium chloride complexes at $25^{\circ}C$ and 1 bar: comparison with the Critical Database and the SLOP'98 (CdCl_n²⁻ⁿ + Cl⁻ = CdCl_{n+1}¹⁻ⁿ)

	lgK _n							
	$CdCl^+$	$CdCl_2^{0}$	CdCl ₃	CdCl4 ₂ ⁻				
Critical Database	1,98 <u>+</u> 0,03	0,62 <u>+</u> 0,1	0,2 <u>+</u> 0,15	—				
SLOP'98 and	1.97	0.61	-0.18	-0.93				
Sverjnsky, 1997 [4]								
This study	1,95 <u>+</u> 0,05	0,47 <u>+</u> 0,1	-0,013 <u>+</u> 0,3	-0,83 <u>+</u> 0,5				
Bazarkina, Zotov								

Experimental data obtained at 25[°]C and 1-1000 bar pressures are given in Table 2. Experimental results are also given for the corrected e.m.f. values, $\Delta E_{corrected} = \Delta E_{measured} - \Delta E_{calibration}$.

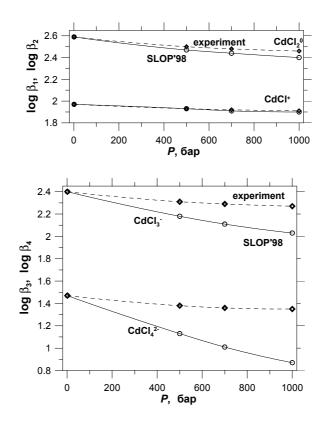

	$mCd(NO_3)_2=0.01 mol$								
P,	$\Delta E_{measured}$, mV				$\Delta E_{corrected}, \mathrm{mV}$				
bar	$(\Delta E_{\text{measured}} = E_p - E_{p=1 \text{ bar}})$			$\Delta E_{\text{calibration}}$,	$\Delta E_{corrected} = \Delta E_{measured} - \Delta E_{calibration}$				
	mKCl			mV	mKCl				
	0.025 mol	0.53 mol	1.4 <i>mol</i>		0.025 mol	0.53 mol	1.4 <i>mol</i>		
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
200	-3.2	-2.1	-1.5	-2.2	-1.0	0.1	0.7		
500	-5.2	-4.7	-3.6	-5.4	0.2	0.7	1.8		
700	-7.1	-6.2	-5.0	-7.6	0.5	1.4	2.6		
900	-9.7	-7.6	-6.3	-9.7	0.0	2.1	3.4		
1000	-10.8	-8.4	-7.0	-10.8	0.0	2.5	3.9		

Table2. Experimental data at 25° C and 1 - 1000 bar

Subsequent interpretation of the experimental results was based on the correlation of nonsolvation contribution to CdCl_n partial molar volumes with the number of ligands, Cl⁻, in the comlex [2].

The corresponding equilibrium calculating was carried out using the GIBBS computer code [3] and Slop'98 database.

As a result, estimated values of partial molar volumes of cadmium chloride complexes and their HKF parameters ($a_1 - a_4$) were determined: V^o (CdCl⁺) = 8.11, V^o (CdCl_{2 aq}) = 31.88, V^o (CdCl₃⁻) = 50.52, V^o (CdCl₄²⁻) =68.58 cm³ mol⁻¹. All the stability constants of cadmium chloride complexes, $lg\beta_n$, show very weak pressure dependencies. Thus, $lg\beta_n$ decreases by 0.06-0.13 as pressure rises from 1 to 1000 bar (Fig. 2).

Fig.2. Logarithms of stability constants for cadmium chloride complexes as a function of pressure (1 - 1000) bar at 25^{0} C log β_{n} = Cd²⁺ + nCl²⁻ⁿ = CdCl_n²⁻ⁿ

This research was supported by the Program of Leading Scientific Schools (6722.2006.5).

References

- Zotov A.V., Koroleva L.A., Osadchii E.G. Potentiometric study of the stability of Eu³⁺ acetate complexes as a function of pressure (1-1000) bar at 25^oC // Geochem. Int. 2006. V. 44. N. 4. PP. 384-394.
- 2. Hovey J.K. Thermodynamic of aqueous solutions // Thesis. Univ. of Alberta. Edmonton. 1988.
- 3. *Shvarov Y., Bastrakov E.* Hch: a software package for geochemical equilibrium modeling // Canberra: Australian Geological Survey Organization. 1999.
- Sverjensky D.A., Shock E.L., Helgeson H.C. Prediction of the thermodynamic properties of aques metal complexes to 1000°С и 5kbar // Geochim. and Cosmochim. Acta. 1997. V. 61. N. 7. PP. 1359-1412.

Published on July, 1, 2006 © Herald of the Department of the Earth Sciences RAS, 1997-2006 All rights reserved

Electronic Scientific Information Journal "Herald of the Department of Earth Sciences RAS" № 1(24) 2006 ISSN 1819 – 6586

Informational Bulletin of the Annual Seminar of Experimental Mineralogy, Petrology and Geochemistry – 2006 URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2006/informbul-1_2006/hydroterm-2e.pdf