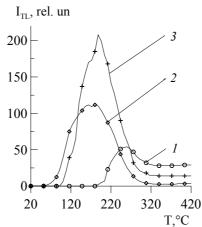
RESEARCH OF THE SHOCK METAMORPHISM OF ORDINARY CHONDRITES BY THE THERMOLUMINESCENCE METHOD

Ivliev A.I., Alexeev V.A., Kuyunko N.S (GEOKHI RAS)


cosmo@geokhi.ru; Ph.: (495) 137-86-14

Key words: meteorites, ordinary chondrites, thermoluminescence, shock metamorphism

Introduction. Since the time of formation, the solar system matter has been affected by various evolution processes both in the protoplanetary nebula or meteorite parent bodies and at the stage of existence of meteorite as independent cosmic bodies. The collision processes obviously played a leading role in the formation of meteorites. Shock and thermal metamorphism accompanying the collisions is considered therefore as the most fundamental process in the evolution of the primordial matter. The experimental study of this process has undoubtedly the crucial importance, especially with respect to the search for quantitative criteria in the estimation of the effects of shock-thermal metamorphism. One of the most sensitive methods of determination of the degree of structural changes in a matter is the thermoluminescence (TL). The intensity of a TL glow in equilibrium ordinary chondrites (peak height of glow or area under peak) changes more than on two orders of magnitude [1]. The main TL phosphor in these meteorites is feldspar, which one is present at all H, L, and LL chondrites approximately in identical proportions and has a similar composition (Ab₇₄, An₂₀, and Or₆) [2]. The investigations of TL in minerals affected by experimental loading in spherically converging shock waves [3-5] have shown that TL characteristics were highly sensitive to changes in the crystal lattice. The shock stage of ordinary chondrites usually is determined by a petrographic method [6, 7]. The purpose of the present investigation was carrying out of the TL investigations of chondrites with a petrographically identified shock stage. And, on the basis of obtained results, carrying out of an estimation of a degree of a shock metamorphism in chondrites with an unknown degree of a shock load.

Experimental method. The method of the sample preparation and the TL measuring is similar to a procedure surveyed in [3-5, 8].

Results of TL measurements. As an example, the Fig. 1 shows the glow curves of the Kunya-Urgench chondrite obtained at the registration of natural TL (curve I), TL induced by X-ray (curve 2), and by γ -radiation of a 137 Cs source (curve 3). The shapes of all curves are typical for ordinary chondrites. A glow peak at a temperature of 260°C characterizes the intensity of natural TL accumulated in the meteorite in cosmic space. The maximum intensity of the TL accumulated after sample irradiation by X-rays is registered at a temperature of ~170°C. The irradiation by γ -quanta gives the maximum intensity at the temperature of ~190°C.

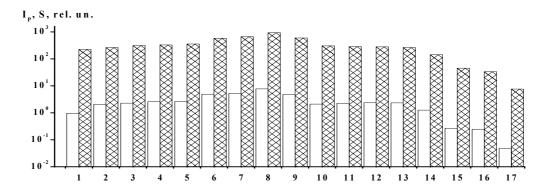


Fig.1. Glow curves of the Kunya-Urgench chondrite obtained at the registration of natural TL (curve 1) and TL induced by X-ray (2) and gamma γ -radiation (3). I_{TL} - the intensity of TL in relative units and T is the sample temperature.

On the results of recording of X-rays and γ -rays induced TL, there were calculated the temperature of a peak, the full width at half maximum, and also peak height of glow (Ip) and intensity of glow TL (Sp). The obtained results were compared to a degree of a shock load [6, 7]. The dependence of values Ip and Sp from a shock class of meteorites was found. However, at examination of TL induced by a X-

rays, it was found, that the most sensing indicators of a degree of a shock load are the value of a peak height (Ip) and area under a curve of glow in a temperature region 40 -350 $^{\rm o}$ C (Sp). The results of these calculations are listed in table and in Fig. 2. In accordance with these data, the increase of values Ip and Sp is observed at the increase of shock pressure up to 10 GPa (stages S1-S2), and subsequent their sharp decrease up to two orders of magnitude is seen at further increase of shock pressure from ~10 up to 90 GPa (stages S3-S6). Using the results of our measurements and values of shock pressures of different classes of meteorites [6,7], we have received the approximate formulas for an estimation of a value of a shock load, which one have undergone chondrites at collisions in space. For shock classes S1-S2 it was obtained: $P = 1.93 \times ln (Sp) - 5.57$, and for S3-S6: $P = -12.28 \times ln (Sp) + 91.74$. The results of evaluations under these formulas are given in the last column of the table.

abic.	shock load (P).	o or a peak r	icigni (ip), aica t	maer the pear	x of glow (Sp) and value o
N п/п	Meteorite	Shock class	Ip	Sp	P, GPa
1	Dhajala H3	S1	0.97±0.09	222±13	4.9±0.3
2	Pribram H5	a-b	2.1±0.1	261±10	5.2±0.2
3	Saratov L4	S2	2.3±0.1	310±16	5.5±0.3
4	Biurboele L4	S1	2.5±0.1	326±20	5.6±0.3
5	Elenovka L5	S2	2.6±0.1	355±9	5.8±0.1
6	Tugalin-Bulen H6	S1	4.9±0.2	575±25	6.7±0.6
7	Nikolskoe L4-5	S2	5.2±0.5	671±67	7.0±0.7
8	Kunya-UrgenchH5		7.7±0.7	928±100	7.6±0.8
9	Barwell L5	S3	4.8±0.3	590±35	13.5±0.8
10	Kunashak L6	e	2.1±0.1	300±28	21±2
11	Pultusk H5	S3	2.3±0.1	285±24	22±2
12	Ochansk H4	S3	2.3±0.3	279±32	23±3
13	Kilabo LL6	S3	2.3±0.1	262±10	23±1
14	Dalgety Downs L5		1.3±0.1	142±14	31±3
15	Malakal L5	e	0.27±0.01	45±2	44±2
16	Kyushu L6	S5	0.25±0.03	34±3	46±5
17					

 0.047 ± 0.002

7.6±0.6

60±5

Pervomaisky L6

Fig.2. Values of Ip and Sp in ordinary chondrites of a different shock classes (see table). The numbers on an abscissa axis correspond to the numbers of meteorites in the table.

Conclusions. The investigation of the TL induced by X-rays in equilibrium ordinary chondrites has shown a high response of values Ip and Sp on a shock load, which one was undergone by these meteorites in space. However for precise identification of shock classes S1 - S3 under the TL data, the preliminary petrographic examinations is necessary. The estimation of a shock load of 17 meteorites was executed. The shock classes of meteorites of Kunya-Urgench (S2), Dalgety Downs (S4), and Pervomaisky (S6) were determined.

References

- 1. *Sears D.W.G.* Thermoluminescence of meteorites: Shedding light on the cosmos // Nucl. Tracks Radiat. Meas. 1988. V. 14. N 1/2. PP. 5-17.
- 2. *Dodd R.* Meteorites. Petrologic-Chemical Synthesis. Cambridge (UK): Cambridge Univ. Press, 1981. Translated under the title: Meteorites. Pelrologiya i geokhimiya. Moscow: Mir. 1986. 384 p.
- 3. *Ivliev A.I.*, *Badyukov D.D.*, *Kashkarov L.L.* Thermoluminescence Investigations of Specimens Subjected to Experimental Impact Load. I: Oligoclase // Geokhimiya. 1995. N 9. PP. 1368-1377.
- 4. *Ivliev A.I., Badyukov D.D., Kashkarov L.L.* Thermoluminescence Investigations of Specimens Subjected to Experimental Impact Load. II: Quartz // Geokhimiya. 1996. N 10. PP.1010-1018.
- 5. *Ivliev A.I., Badyukov D.D., Kuyunko N.S., Kozlov E.A.* Thermoluminescence Investigations of Specimens Subjected to Experimental Impact Load. Ill: Calcite // Geokhimiya. 2002. N 8. PP. 820-833.
- 6. Stöffler D., Keil K., Scott E.R.D. Shock metamorphism of ordinary chondrites // Geochim. et Cosmochim. Acta. 1991. V. 55. N 12. PP. 3845-3867.
- 7. *Dodd R.T., Jarosewich E.* Incipient melting in and shock classification of L group chondrites // Earth and Planet. Sci. Lett. 1979. V. 44. N 2. PP. 335-340.
- 8. *Alexeev V.A.*, *Gorin V.D.*, *Ivliev A.I.*, *Kashkarov L.L.*, *Ustinova G.K.* Combined Study of Thermoluminescence. Tracks and Radionuclides in the Recently Fallen Kunya-Urgench Chondrite // Geokhimiya. 2001. N 11. PP. 1139-1151.

Electronic Scientific Information Journal "Herald of the Department of Earth Sciences RAS" N 1(24) 2006 ISSN 1819 – 6586

Informational Bulletin of the Annual Seminar of Experimental Mineralogy, Petrology and Geochemistry — 2006 URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2006/informbul-1 2006/planet-5e.pdf

Published on July, 1, 2006 © Herald of the Department of the Earth Sciences RAS, 1997-2006 All rights reserved