Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» №1(24)'2006 ISSN 1819-6586 URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2006/informbul-1 2006/term-17.pdf

ЭКСПЕРИМЕНТАЛЬНО ВЫЯВЛЕННЫЕ ОСОБЕННОСТИ АЛМАЗООБРАЗОВАНИЯ В КАРБОНАТ-СИЛИКАТ-СУЛЬФИДНЫХ РАСПЛАВАХ МАНТИИ Шушканова А.В., Литвин Ю.А. (ИЭМ РАН)

shushkanova@iem.ac.ru; Факс: (496) 524-4425; Тел: (496) 524-4425

<u>Ключевые слова</u>: фазовые отношения, алмазообразование, материнские среды, карбонат-силикат-сульфидные системы

Вопрос химического состава материнских алмазообразующих сред имеет большое значение для проблемы происхождения алмаза. В настоящее время наиболее вероятной представляется версия, что главными материнскими средами природных алмазов являются карбонатитовые расплавы. Они состоят, главным образом, из карбонатных и силикатных компонентов. В полчиненном количестве в них содержатся такие компоненты, как сульфиды, фосфаты, галоиды, оксиды, углекислый газ, вода и т.д. Проведенные при высоком давлении эксперименты демонстрируют, что как главные, так и примесные компоненты могут быть эффективными для спонтанной нуклеции алмаза. Спонтанная кристаллизация алмаза осуществлена экспериментально в карбонат-силикат-углеродных [1, 2], сульфид-углеродных [3], хлорид-углеродных [4] расплавах-растворах, водно-углеродных и углекислотно-углеродных флюидах [5]. Это означает, что «экспериментальный критерий», основанный на фактах синтеза алмаза в тех или иных средах, в оценке химического состава материнских алмазообразующих сред, хотя необходим, но недостаточен. Представляется, что однозначное решение проблемы материнских алмазообразующих сред следует искать в комплексном подходе, формулируя задачу как выяснение в широком диапазоне мантийных давлений и температур химического состава и фазового состояния материнских сред, в которых одновременно формировались и алмазы и сингенетические твердые, расплавные и флюидные включения в них. Следовательно, экспериментальные исследования должны быть сосредоточены на поиске таких материнских расплавов, которые являются первичными как для самих алмазов, так и для их сингенетических включений.

Карбонатитовая модель совместима как с экспериментальными результатами по спонтанной кристаллизации и росту алмаза на затравках, так и с минералогическими данными для сингенетических включений минералов, расплавов и флюидов в алмазах мантийного происхождения [6 - 8]. Экспериментально определено, что сульфидные расплавы с растворенным углеродом эффективны для спонтанного зародышеобразования и роста алмаза [3, 9]. Не выяснена способность сульфидных расплавов к сингенетическому формированию алмазов и первичных ростовых включений в них.

Мы провели исследования фазовых отношений системы $CaCO_3$ - пироп (Mg₃Al₂Si₃O₁₂) - пирротин (FeS), которая моделирует составы природных алмазообразующих сред: CaCO₃ является представительным компонентом глубинных карбонатитов и флюид-карбонатитовых включений в алмазах; пироп Mg₃Al₂Si₃O₁₂ представляет собой индикаторный компонент гранат-перидотитовой фации верхней мантии; пирротин FeS принадлежит к группе сульфидных минералов, тесно ассоциированных с мантийными ксенолитами и алмазами. Наряду с этим, были изучены фазовые отношения бинарных граничных систем: CaCO₃ – пироп, пироп - пирротин и CaCO₃ – пирротин. Цель настоящей работы заключалась в экспериментальном исследовании фазовых равновесий при плавлении модельных систем при *PT*-параметрах, отвечающих области термодинамической устойчивости алмаза (P = 7.0 ГПа, T = 1000-2000°C). Главные задачи связаны с получением количественной информации о равновесных отношениях минералов и расплавов и, в особенности, о пределах взаимной растворимости компонентов одного расплава в другом.

Оказалось, что при плавлении карбонат-силикатной системы карбонатный и силикатный расплавы полностью смесимы. При закалке карбонатно-силикатный расплав в опытах чаще образует дендритные или мелкозернистые агрегаты (рис. 1). При этом формируются фазы, представленные гранатом пироп-гроссулярового состава и Ca-Mg-карбонатом. При этом появление Ca-Mg-фаз фиксируется на всем диапазоне экспериментальных температур (1150 - 1650°C).

Рис.1. Карбонатно-силикатный расплав после закалки: а) обр. № 1/1126. Соотношение стартовых материалов -Prp₅₀(CaCO₃)₅₀; Т=1400°С; Р=7ГПа; выдержка – 60 мин.; б) обр. № 1/1123. Соотношение стартовых материалов - Prp₅₀(CaCO₃)₅₀; Т=1250°С; Р=7ГПа; выдержка – 60 мин

Ниже (табл. 1) приведены микрорентгеноспектральные анализы фаз. Из табл. видно, что Са- и Мд-компоненты присутствуют во всех продуктах кристаллизации единого карбонатно-силикатного расплава.

MgO	Al ₂ O ₃	SiO ₂	CaO		
	силикатные фазы				
24.90 21.82 20.20 17.47	25.81 24.34 23.35 19.66	8.37 11.46 15.38 8.97	8.37 11.46 15.38 8.97		
карбонатные фазы					
22.35 2.02 17.67	1.63 1.13 4.61	30.18 48.39 30.11	30.18 48.39 30.11		

Таблица 1 Микрорентгеноспектральные анализы фаз (мас % окислов эл-в) образованных при закалке карбонатно- силикатного расплава

Система $CaCO_3 - Mg_3Al_2Si_3O_{12}$ псевдобинарна, т.к. в субсолидусе при высоких давлениях граничные компоненты реагируют с образованием Mg-Ca-карбоната и пироп-гроссулярового граната. При плавлении карбонат-сульфидной системы $CaCO_3 - FeS$ сульфидный расплав формирует крупные и мелкие округлые в капли в карбонатном расплаве (рис. 2). Подобные закалочные конфигурации образцов указывают на несмесимость расплавов. Микрозондовый анализ карбонатного и сульфидного расплавов показал некоторое наличие небольших количеств Ca в сульфидном расплаве (табл. 2) и Fe в карбонатном расплаве при отсутствии S (табл. 3).

Вероятно, что Fe могло попасть в карбонатный расплав только из сульфидного, но не как сульфидный компонент, а в карбонатной или оксидной форме. Таким образом, в данной системе при высоких давлениях и температурах могут иметь место следующие реакции:

(1) CaCO₃+FeS = CaS + FeCO₃ или

(2) $CaCO_3 + FeS = FeO + CO_2 + CaS$.

Ранее нами были изучены сульфид-силикатная система пирротин – гранат, а также ее граничное сечение пироп $Mg_3Al_2Si_3O_{12}$ – FeS [9]. Микрозондовые анализы экспериментальных фаз и фотографии СЭМ показали некоторую неравномерность распределения растворенных сульфидных компонентов в силикатных расплавах, при этом растворимость составляет 0.5–0.8 мас. % FeS. В то же время растворимость компонентов граната, как и частичного и полного силикатных расплавов граната в сульфидных расплавах оказались ниже инструментального предела обнаружения (например, по кремнию и алюминию 0.16 - 0.50 и 0.18–0.40 мас. %, соответственно).

Таблица 2

	Lca Lsulp	nrb
SEM MAG: 2:00 kX HY: 2:00 kV VAC: HVac	EFF EF Det + SEF Det DATE: 02/1406 00 µm Exerc: Vega TSISIOM	Vega offescen Result Group Eer Arcs

Рис.2. Равновесные сульфидный и карбонатный расплавы обр. № 1/1128. FeS₅₀(CaCO₃)₅₀; T=1405°C; Р=7ГПа; выдержка – 60 мин.

	почных сульфилныхфаз (мас %)				
ĺ	S Fe Ca				

2	ге	Ca
36.76	62.28	<2σ
36.45	62.09	0.18
36.09	62.10	0.47
37.47	61.70	0.21

Таблица 3 радыные анадизы закадон-

Микрорентгеноспектральные анализы закалочных карбонатных фаз

0	S	Ca	Fe
14.77	<2σ	36.49	0.27
14.76	<2σ	36.43	0.40
14.93	<2σ	37.08	0.29
14.63	<2σ	36.21	0.25

Эксперименты по плавлению тройной системы выявили практически полную несмесимость сульфидного и однородного силикатно-карбонатного расплавов. Сульфидный расплав формирует капли в карбонатно-силикатном (рис. 3).

Какая-либо растворимость силикатных и карбонатных компонентов в сульфидном расплаве не обнаруживается (табл. 4, 5).

Микрорентгеноспектральные анализы образцов обнаруживают присутствие железа и отсутствие S, то есть Fe входит в карбонатно-силикатный расплав не в виде сульфида, а вероятно, в виде карбоната или оксида. Также фиксируется Ca и избыточный кислород в составе сульфидной фазы. Как и для карбонатно-сульфидной системы, возможно, здесь имеют место реакции (1) или (2), не затрагивающие силикатные компоненты.

Таким образом, система $CaCO_3 - Mg_3Al_2Si_3O_{12} - FeS$ при высоких T-P представлена следующими фазами: Mg-Ca-карбонатом (Mg,Ca)CO₃, пироп-гроссуляровым гранатом (Mg,Ca)₃Al_2Si_3O_{12} и пирротином FeS. Фактически это две несмешивающиеся жидкости, карбонатно-силикатная и сульфидная, которые при закалке образуют описанные выше соединения.

В результате проведенных экспериментов выявлено, что при параметрах алмазообразования карбонат-силикат-сульфидная система представляет собой два несмешивающихся расплава, карбонатно-силикатный и сульфидный. Это, в свою очередь, свидетельствуют о том, что сульфидные расплавы, хотя и обеспечивают формирование алмазов, не эффективны для сингенезиса алмазов и их силикатных и карбонатных включений, в отличие от силикатно-карбонатных расплавов. Это значит, что сульфидные расплавы не могут быть доминирующими материнскими средами для основной массы природных алмазов, для которых характерны сингенетические включения силикатов и карбонатов. Вместе с тем, можно допустить ограниченное значение сульфид-углеродных расплавов в природном алмазообразовании. Сульфидные расплавы могут включаться в виде несмешивающихся капель в карбонатно-силикатные материнские среды. При этом в таких сульфидных расплавах, если в них растворено достаточное количество углерода, происходит спонтанная нуклеация

и рост алмазов с характерными для сульфидных сред типоморфными признаками. Алмазы, образованные в сульфидном расплаве, могут содержать первичные включения только сульфидного материала. При образовании в карбонатно-силикатных (карбонатитовых) расплавах с растворенным углеродом алмазы могут содержать включения силикатного, карбонатного и сульфидного материала.

Рис.3. Равновесные сульфидный и карбонатносиликатный расплавы после закалки. Обр. № 1/1088. [(MgCO₃)₅₀Prp₅₀]₅₀FeS₅₀; T=2400°C; Р=7ГПа; выдержка – 2 мин.

	Tao	лица 4
Микрорентгеноспектральные	анализы	карбо-
натно-силикатных фаз (мас.%)		

натно-силикатных фаз (мас. 70)					
MgO	Al ₂ O ₃	SiO ₂	SO ₃	CaO	FeO
18.81	24.35	40.23	0.03	10.64	5.22
19.69	23.38	42.70	$<2\sigma$	8.85	4.86
21.63	25.04	46.64	$<2\sigma$	10.11	5.63
21.33	23.57	43.22	$<2\sigma$	8.89	4.18

Таблица 5

Микрорентгеноспектральные анализы сульфидных фаз (мас.%)

S	Ca	Fe	0
37.80	0.21	59.67	1.83
38.23	0.23	60.33	1.61
36.80	<2σ	59.30	1.59
36.55	0.17	59.60	3.18

Поддержка: программа РАН № П9-3 «Исследования вещества в экстремальных условиях», гранты РФФИ: 06-05-64478, 05-05-64101, 05-02-17283, 04-05-64979 и 04-05-97220 (совместно с Министерством промышленности и науки Московской обл.), НШ-2849.2006.5

Литература

- 1. Литвин Ю.А., Жариков В.А. // ДАН. 2000. Т. 372. №6. СС. 808-811.
- 2. Шацкий А.Ф., Борздов Ю.М., Сокол А.Г. и др. // Геология и геофизика. 2002. Т. 43. №10. СС. 94-950.
- 3. Литвин Ю.А., Бутвина В.Г., Бобров А.В., Жариков В.А. // ДАН. 2002. Т. 382. №1. СС. 106-109.
- 4. Литвин Ю.А. // ДАН. 2003. Т. 389. №3. СС. 382-386.
- 5. Akaishi M., Yamaoka S. // J. Cryst. Growth. 2000. V. 209. PP. 999-1003.
- 6. Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии // Новосибирск: Наука. 1974. 264 с.
- 7. Schrauder M., Navon O. // Geochim. Cosmochim. Acta.1994. V. 58. № 2. PP 761-771.
- 8. Izraeli E.S., Harris J.H., Navon O. // Earth Planet. Sci. Lett. 2001. V. 187. PP. 323-332.
- 9. Шушканова А.В., Литвин Ю.А. // Геохимия. 2006 (в печати).
- 10. Литвин Ю.А., Шушканова А.В., Жариков В.А. // ДАН. 2005. Т. 402. № 5. СС. 656-660.

Вестник Отделения наук о Земле РАН - №1(24) 2006 Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2004 года (ЕСЭМПГ-2006) URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2006/informbul-1_2006/term-17.pdf Опубликовано 1 июля 2006 г

© Вестник Отделения наук о Земле РАН, 1997 (год основания), 2006 При полном или частичном использовании материалов публикаций журнала, ссылка на «Вестник Отделения наук о Земле РАН» обязательна