THERMODYNAMIC PROPERTIES OF MgO-SiO₂ MELTS

Shornikov S.I. (GEOKHI RAS)

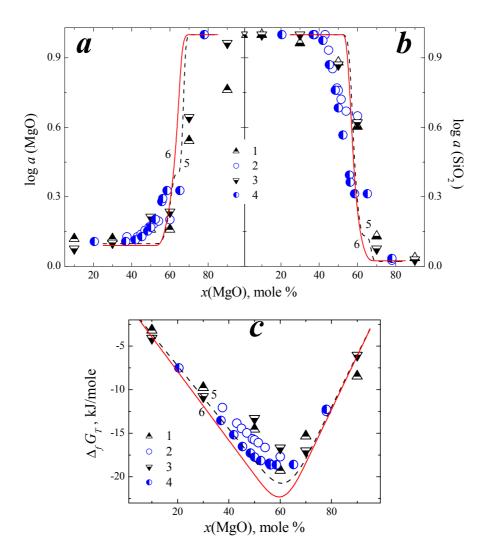
shorn@mail.wplus.net

Key words: MgO-SiO₂ system, thermodynamic properties of melts, theory of ideal solutions of complex components

This work presents the calculation of the thermodynamic properties of the MgO-SiO₂ melts at temperature from 1700 to 2300 K in the framework of the ideal associated solutions theory. The simplified lattice model as before for CaO-Al₂O₃ [1], CaO-SiO₂ [2] and Al₂O₃-SiO₂ system [3] accounts for the intermolecular interactions using the semi-phenomenological parameters, which were determined on the base of the experimental [4] and reference [5, 6] thermodynamic data.

In contrast to the previous calculations made in the frameworks of the quasichemical model [7], the initial thermodynamic data considers 8 condensed phases (4 solid and 4 liquid) and 11 gas species; these components are listed in the Table.

The same Table gives the calculated values of the Gibbs formation energies for the compounds and the vapor species over the MgO-SiO₂ system, which are used for the calculation of the equilibrium conditions in the system at a given composition and temperature. The equation solution for the integral Gibbs energy for the system studied was found by the widely used approach, namely the Gibbs energy minimization method.


Table The Gibbs energies of formation of condensed phases and vapor species over MgO-SiO₂ melts at 2000 K calculated in the present study according to data [4-6]

Condensed phases				Gas phase	
Solid phases	$\Delta_f G_{2000}$,	Liquid phases	$\Delta_f G_{2000}$,	Vapor species	$\Delta_f G_{2000}$,
	kJ/mole		kJ/mole		kJ/mole
MgO	-376.430	MgO	-349.107	Mg	-57.263
MgSiO ₃	-956.936	MgSiO ₃	-963.256	MgO	-108.759
Mg ₂ SiO ₄	-1363.087	Mg ₂ SiO ₄	-1357.504	Si	167.228
SiO ₂	-550.476	SiO ₂	-550.520	SiO	-254.769
				SiO ₂	-314.875
				Si ₂	216.304
				Si ₂ O ₂	-558.796
				Si ₃	265.892
				0	121.662
				O_2	0.000
				O_3	273.851

The obtained results are shown in fig. 1. and compared with the experimental data obtained by the mass spectrometric Knudsen effusion method in the temperature range 1770-1973 K [8-10].

As seen from the figure, the calculated oxide activities at 1873 and 1973 K showed the presence of small liquid phase region according to the phase diagram of MgO-SiO₂ system. These values are correlated to the experimental results. The experimental data differ greatly, which might be due to measuring errors amounting to 20%.

The calculated values of Gibbs energies of the magnesium silicate melts formation are deviated of 3-4 kJ/mole with respect to the experimental data heaving the errors of the same order of magnitude.

Fig.1. Activities of MgO (a), SiO₂ (b), and the Gibbs energies of formation of the melts of the MgO-SiO₂ system (c) at 1770 (1), 1873 (2, 5), 1890 (3) and 1973 K (4, 6), obtained by mass spectrometric method (1 and $3 - \inf [8, 9]$, 2 and $4 - \inf [10]$) and calculated in the present study (5, 6).

References

- 1. Shornikov S.I. Thermodynamic properties of CaO-Al₂O₃ melts // Electronic Scientific Information Journal "Herald of the Department of Earth Sciences RAS" №1(21)' 2003. http://www.scgis.ru/russian/cp1251/h_dgggms/1-2003/informbul-1_2003/magm-11e.pdf
- 2. *Shornikov S.I.* // Proc. Intern. Conf. «Science, technology and silicate material production present and future». M. 2003. V. 4. PP. 196-201.
- 3. Shornikov S.I. Thermodynamic properties of Al₂O₃-SiO₂ melts // Electronic Scientific Information Journal "Herald of the Department of Earth Sciences RAS" № 1(22)' 2004. http://www.scgis.ru/russian/cp1251/h_dgggms/1-2004/informbul-1_2004/planet-9e.pdf
- 4. Shornikov S.I., Archakov I.Yu., Shultz M.M. // Russ. J. General Chem. 2000. V. 70. N. 3. PP. 360-370.
- 5. Glushko V.P., Gurvich L.V., Bergman G.A., Veitz I.V., Medvedev V.A., Khachkuruzov G.A., Yungman V.S. Thermodynamic Properties of Individual Substances // Ed.: Glushko V.P. M.: Nauka. V. 1-4. PP. 1978-1982.
- 6. Chase M.W. // J. Phys. Chem. Ref. Data. 1998. Monograph N. 9. PP. 1-1951.

- 7. Decterov S.A., Jung I.H., Pelton A.D. // J. Amer. Ceram. Soc. 2002. V. 85. N. 12. PP. 2903-2910.
- 8. *Kambayashi S., Kato E. //* J. Chem. Thermodyn. 1983. V. 15. N. 6. PP. 701-707.
- 9. Kambayashi S., Kato E. // J. Chem. Thermodyn. 1984. V. 16. N. 2. PP. 241-248.
- 10. Stolyarova V.L., Lopatin S.I., Bondar V.V. // Dokl. Phys. Chem. 2004. V. 399. N. 1. PP. 82-84.

Electronic Scientific Information Journal "Herald of the Department of Earth Sciences RAS" N 1(24) 2006 ISSN 1819 – 6586

Informational Bulletin of the Annual Seminar of Experimental Mineralogy, Petrology and Geochemistry – 2006 URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2006/informbul-1_2006/term-29e.pdf

Published on July, 1, 2006 © Herald of the Department of the Earth Sciences RAS, 1997-2006 All rights reserved