МОДЕЛИ ВЕРХНЕЙ МАНТИИ ЗЕМЛИ ПОД КОНТИНЕНТАМИ В.А.Кронрод, О.Л.Кусков

Институт геохимии и аналитической химии им. В.И.Вернадского РАН, Москва

Вестник ОГГГГН РАН № 5 (15)'2000 т.1 URL: http://www.scgis.ru/russian/cp1251/h dgggms/5-2000/magm16

В работе [1] рассматривается метод построения самосогласованных региональных и глобальных моделей верхней мантии Земли в системе CFMAS. Под самосогласованной моделью подразумевается петролого-геофизическая модель верхней мантии, обеспечивающая близость получаемых в результате решения обратной задачи значений валового состава и температуры к параметрам экспертной модели. В качестве экспертной следует принимать модель, дающую наиболее полное описание состава, температуры и сейсмических свойств мантийного вещества для верхней мантии Земли по совокупности петрологических, геофизических и теплофизических исследований.

В настоящей работе параметры экспертной модели задавалась следующим образом.

Температура. Применялось распределение температуры для континентов [2] при тепловом потоке через поверхность 50 мвт м⁻².

Профили сейсмических волн. Задаются по модели IASP 91 [3]. Модель IASP 91 построена по данным сейсмических станций, расположенных в основном на континентах по всему земному шару, поэтому она отражает строение континентальной мантии.

Химический состав верхней мантии в ЭМ. В основу петрологической модели положены обобщенные петрологические данные по распределению петрогенных оксидов в верхней мантии Земли. На глубине 70 км состав в ЭМ задается по среднему составу шпинелевых перидотитов для континентальной мантии [4]. В интервале глубин 80-210 км задается средний состав гранатовых перидотитов для континентальной мантии [5]; на глубинах 211-370 км - по среднему составу для порфирокластических перидотитов [6], 370-400 километров - по модели примитивной мантии [4].

Основные детали метода расчета подробно описаны в [7]. Профиль температуры описывается параболой до 210 км, на больших глубинах профиль линеен с градиентом, равным среднему

адиабатическому градиенту. Предполагаются линейные зависимости [4] между концентрациями оксидов магния алюминия и кальция: $\delta C_{Al2O3} = B$ δ_{MgO} , $C_{CaO} = KC_{Al2O3}$ (B < 0). Коэффициенты B, K на основании известных данных и предварительно проведенных численных экспериментов задавались следующими: Н=70-80 км: В=-0.325, К=0.97; Н=90-210 км: В=-0.325, К=0.7+0.0018(Н(км)-120); H=220-400 км : B=-0.5, К=0.8. Эти зависмости позволяют определять концентрации тугоплавких (C_{Al2O3}, C_{CaO}) во всей области по профилю концентрации С_{МдО} и концентрациям С_{Аl2O3} на глубинах 70 и 270 км. Искомое решение находится из условий минимального удаления расчетных параметров от глобальной экспертной модели, которые можно записать в виде условия минимизации функционала 9:

$$\vartheta = \sum_{i=1}^{N} \sum_{F} \alpha_{F} (F_{i}^{0} - F_{i})^{2}$$

(F=V_p, V_s, T, C_m), (m=FeO, MgO,Al₂O₃, CaO) Здесь индексом "0" обозначены параметры экспертной модели.

Результаты расчетов по распределению температуры, плотности и концентраций петрогенных оксидов под континентами приведены в табл. 1. Среднее отклонение сейсмических расчетных профилей от модели IASP-91 составляет 0.3% для продольной скорости и 0.7% для поперечной. Примечательно, что в области глубин 170-270 км решение полностью совпадает с IASP-91. Максимальные отклонения от IASP-91 составляют 0.9% для продольной скорости на глубине 120 км и 1.3-2% для поперечной на глубинах 70 км, 370 км, 400 км.

Расчетный профиль температур близок к теплофизическим моделям распределения температуры в мантии [2].

Если не учитывать более тонкие эффекты, мантия по составу может быть разделена на области, показанные в табл. 2.

Таблица 1

Параметры верхней мантии Земли по результатам решения обратной задачи. Индексом '0' обозначены скорости по IASP-91

Нкм	$P_{\kappa\delta ap}$	T ⁰ C	C_{MgO}	C_{FeO}	C _{Al2O3}	C_{CaO}	C_{SiO2}	$V_P^{\ 0}$	V_{P}	V_{s}^{0}	Vs	ρ	Mg#
71.	19.	841.	41.5	8.20	1.95	1.90	46.45	8.04	8.05	4.48	4.56	3.295	.900
120.	36.	1120.	43.5	8.10	1.20	.84	46.36	8.05	8.12	4.50	4.54	3.295	.905
171.	54	1329.	43.3	7.90	1.27	1.0 2	46.51	8.19	8.20	4.51	4.53	3.317	.907
210.	68.	1400.	43.2	7.90	1.29	1.12	46.49	8.30	8.30	4.52	4.55	3.346	.907
271.	89.	1434.	42.7	8.35	2.20	2.13	44.62	8.52	8.52	4.63	4.62	3.42 0	.901
371.	124.	1491	40.0	8.37	3.50	2.80	45.33	8.89	8.80	4.80	4.72	3.530	.895
400.	134.	1508.	38.0	8.40	4.50	3.60	45.50	9.03	8.89	4.87	4.76	3.560	.890
						-							

Таблица 2

Модель верхней мантии Земли (система CFMAS)

Оксиды H≤70 км 70<H≤210 км H > 230 км

SiO ₂	≅46	≅46 (<(C _{SiO2}) ₇₀	44.5-45.5
Al_2O_3	≅2	1.2-1.3	≥ 2.0
FeO	≅8	≅8 (<(C _{FeO}) ₇₀	8.3-8.5
MgO	≅41	>43	38.0-42.7
CaO	≅1.9	0.8-1.2	≥ 2.0

Верхняя область (в данном случае 70 км) соответствует шпинелевым перидотитам. Глубины 120-210 км - низкотемпературным перидотитам, глубже (до 270 км) - высокотемпературным перидотитам. Область глубин > 270 км имеет большую степень неопределенности и здесь почти равновероятны (с точки зрения упругих мантии) свойств составы с содержанием MgO=38-42 мас.%. Резюмируя, можно сделать основной вывод, что двухрезервуарная модель мантии с размытой границей в области глубин 210-230 км наилучшим образом согласовывает данные глобальной сейсмологической модели IASP 91 и петрологические модели верхней мантии.

 Кронрод В.А.,Кусков О.Л., 1996. Восстановление температуры и валового состава верхней мантии по сейсмическим данным. *Геохимия*, N 1: 80-85.

- 2. Pollack H.N., Hurter J., Johnson R. 1993. Heat flow from the Earth's interior: analysis of the global data set. *Rew. Geophys*, 31: 267-280.
- 3. Kennet B.L.N., Engdahl E.R. 1991. Traveltimes for global earthquake location and phase identification. *Geophys. J. Int.*, 105: 429-465.
- 4. McDonough W.F. 1990. Constrains on the composition of the continental lithospheric mantle. *Earth Planet. Sci. Lett.*, 101: 1-18.
- Maaloe S., Aoki K.I. 1975. The major element composition of the upper mantle estimated from the composition of lherzolites. Contrib. Mineral. Petrol. 63, 161-173.
- Илупин И.П., 1989. Химический состав глубинных ксенолитов из кимберлитов./ Геохимия глубинного вещества Земли. Ред. Б.Г.Лутц М.: Институт физики Земли АН СССР, с. 26-68.
- 7. Кусков О.Л., Кронрод В.А. 1999. Луна: химический состав и внутреннее строение. *Астроном. Вестник*, 33, №5: 437-446.
- 8. Когарко Л.Н., Рябчиков И.Д., 1988. Дифференциация мантии Земли (по геохимическим данным). *Геохимия*, N 2: 223-235.