
 80 

BOSE-EINSTEIN APPROXIMATION IN SELF-CONSISTENT EQUATION OF STATE  
OF MINERALS  
P.I.Dorogokupets 
Institute of the Earth’s Crust, Irkutsk, 664033, Russia 
 
This study was supported by the Russian Fundamental Research Foundation (Project No. 99-05-64891) 
Herald DGGGMS RAS № 5 (15)’2000 v.2 
URL: http://www.scgis.ru/russian/cp1251/h_dgggms/5-2000/term2.eng 
 

Introduction 
 

 Knowledge of self-consistent thermodynamic 
functions of minerals is the main requirement for 
computer modeling of chemical equilibria and con-
struction of geophysical models in lower crust and 
mantle of the Earth. This problem is resolved in well 
known method of potentials in the Debye approxima-
tion [e.g. 1-6]. Other approaches to this problem are 
known also [e.g. 7-10]. Otherwise for calculation of 
the thermodynamic functions vs. T, P and V it is nec-
essary to enter different simplifications as it was 
made in Anderson and Zou [11] formulation of the 
thermodynamic functions for mantle minerals.  
 The main purpose of this study is the 
modification of the Zharkov and Kalinin [1] 
formalism. In place of the usual Debye function, we 
are using the Bose-Einstein functions for the 
approximation of thermal part of the Helmholtz free 
energy. The Bose-Einstein functions was proposed 
by Kut'in and Pyadushkin [12] for the Gibbs energy 
at zero pressure, but these relations may be used in 
the VT relations, that is for the Helmholtz free 
energy. As a result we obtain a set of equation for 
volume-temperature dependence of a thermodynamic 
functions. We can apply the derived set of equations 
for calculation of any thermodynamic functions vs. 
PVT if we find a set of fitting parameters in our 
model optimizing available experimental 
measurements of the heat capacity and relative 
enthalpy vs. T, volume as function of pressure and 
temperature, thermal expansion coefficient, bulk 
moduli etc. Finally, we obtain a simple thermal 
equation of state for mantle minerals which one 
allows both to evaluate self-consistent 
thermodynamic functions from experimental 
measurements and to calculate one vs. any 
temperature and pressure. This EoS is equally 
suitable both for petrological constructions and for 
geophysical models of the deep of the Earth.  
 

Basic equations 
 
 The Helmholtz free energy F(V,T) may be 
written as [1, 13]: 

F(V,T)= U0+ EP(V)+ Fth(V,T) + Fa(V),  (1) 
where U0 is energy at 0 K and zero pressure, EP(V) is 
a part of energy depend only from volume, Fth(V,T) 
is a thermal part of the free energy, Fa(V) is anhar-
monic part of the free energy.  

Energy vs. volume may be expressed using the loga-
rithmic equation of state by Poirier and Tarantola 
[14]: 
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where K0 and V0 are bulk modulus and volume at 
zero temperature and pressure, K’=dK0/dP, x=V/V0. 
The pressure P(V)=–∂EP/∂V and bulk modulus 
KT(V)=–V(∂P(V)/∂V) written as: 

],)(ln
2

2'ln[1)( 2
0 xKx

x
KVP −

+−=   (3) 

],)(ln
2

2'ln)'1(1[1)( 2
0 xKxK

x
KVKT

−
+−+= (4) 

The thermal part of free energy expressed using the 
Bose-Einstein functions [12]: 
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where R is gas constant, mB, mE1 and mE2 are degrees 
of freedom and mB+mE1+mE2 ≥ 3n and n is number of 
atoms, �B, �E1 and �E2 are the characteristic tem-
peratures Bose and Einstein parts, b=1/[exp(g)-1], 
g=dln[1+�B/(Td)], d is fitting parameters for heat 
capacity near 0 K. If d = 1 we have linear depend-
ence of heat capacity, for d = 4 this dependence ap-
proaches Debye capacity and we have Einstein ca-
pacity. 
From (5) we can obtained the internal energy and the 
heat capacity at constant volume: 
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From (5) we have the thermal pressure Pth = –
(∂Fth/∂V)T: 
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where EB, EE1 and EE2 are Bose and Einstein parts of 
the inner energy γB, γE1 and γE2 are the Gruneisen pa-
rameters γ= –(∂ln�/∂lnV)T , and from (8) can be 
found KTth = –V(∂Pth/∂V)T: 

VTCqP

VTCqPK

VEEEBEthE

VBBBBthBTth

/)γ

/)γ

1
2

1111

2

(1

(1

γ

γ

−+++

+−++=  

VTCqP VEEEEthE /)ã(1 2
2

2222 γ−+++ , (9) 
where PthB, PthE1 and PthE1, CVB, CVE2 and CVE2 are 
Bose and Einstein parts of thermal pressure and heat 
capacity at constant volume, qB, qE1 и qE2 are loga-
rithmic derivatives q = (∂lnγ/∂lnV)T. 
 At high temperatures the anharmonicity 
should be taken into account. According [1], the 
anharmonic part of the free energy is propor-
tional to the square of temperature: 

Fa(V) = –a(V)T2,   (10) 
where a(V) is the anharmonic parameter. From 
this we have: 

Ea = aT2, Sa = 2aT и CVa = 2aT, Pa = γaEa/V,  
γa=(∂lna/∂lnV)T, KTa = Pa(1–γa).      (11) 

We assume that γa = const.  
From the slop at constant volume  
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we can found thermal expansion coefficient 
α=(∂P/∂T)V/KT, where KT=KT(V)+KTth+KTa. 
 The volume dependence of the Gruneisen pa-
rameters and characteristic temperatures written in 
classical form: 

γ = γ0xq и  Θ = Θ0exp[γ0(1–xq)/q].   (13) 
Pressure, enthalpy and the Gibbs energy may be 
found from P=P(V)+Pth+Pa,     H=E+PV,       
G=F+PV.  
We assume that thermodynamic values of the 
Gruneisen parameter is true for any conditions 

γ=αKTV/CV  и γ=αKSV/CP,    (14) 
where KS is adiabatic bulk modulus and CP is heat 
capacity at constant pressure. 
 The offered model allows to calculate any 
thermodynamic functions at given temperature and 
volume or pressure if we know all fitting parameters: 
U0, V0, K0, K’, d, mB, mE1, mE2, ΘBo, ΘE1o, ΘE2o, ao, 
γBo, γE1o, γE2o, γa, qB, qE1, qE2. The fitting parameters 
may be obtained by optimization, that is, by solving 
the set of equations using the weighted least squares 
method and experimental data on heat capacity at 
constant pressure, relative enthalpy, volume, thermal 
expansion coefficient, bulk moduli and other data. 
The offered set of equations can be simplified by 
suspecting, that the Gruneisen parameter and pa-
rameter q is identical for all thermal parts, that essen-
tially reduce number of fitting parameters. Now we 
have a following set of fitting of parameters: U0, V0, 
K0, K’, d, mB, mE1, mE2, ΘBo, ΘE1o, ΘE2o, a, γ, γa, q. 
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