RESEARCH OF PHASE TRANSITIONS IN ALKALINE METAL PNICTIDES AT HIGH PRESSURE Leonova M.E., Gulish O.K., Sevast'yanova L.G., Burdina K.P.

Herald of the Earth Sciences Department RAS, № 1(20)'2002

URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2002/informbul-1.htm#faza-5.engl

It is known, that at atmospheric pressure alkaline metal pnictides A_3B (A = Li, ... Cs, B = N, ... Bi) crystallize in three different structure types: hexagonal structure types AlB₂ and Na₃As, and cubic - Li₃Bi or NaTl. The last structural type is characteristic only of such compounds, as Cs₃Sb and Cs₃Bi [1], i.e. with a maximum atom radius of alkaline metal. At pressure less than 1.0 GPa and room temperature Li₃N (structural type AlB₂) undergoes polymorphic transformation in the denser structure Na₃As, is metastable in usual conditions [2], and at higher 8.0 GPa – can transformed in cubic structure [3]. The information about a behavior Li₃P, Na₃Sb and Na₃Bi at high pressure practically is absent.

The synthesis at high pressure was performed in a toroid type apparatus [4] at pressure up to 8 GPa and 1370-1870 K. Pressure and temperature value were estimated usual for "solid-phase" chambers by an indirect method - by preliminary calibration. The control an amount and structure of phases on all stages of synthesis have carried out by methods diffraction quenching after HPHT treatment samples (XRD analysis, Cu-K_{α} radiation), or in-site in a pressure range 10⁻⁴-9.0 GPa in the diamond high-pressure chamber at room temperature [5].

There is shown, that the irreversible polymorphism is characteristic only for lithium antimonide. The cubic modification of lithium phosphide is obtained at high pressure and temperature (4 GPa, 400 K) [6], but this modification remains steady under usual conditions only within several hours.

Fig 1. Dependence of lattice parameters for hexagonal (a_H, c_H) and cubic (a_C) structures from pressure. Dark circles- increasing pressure, open circles- decreasing pressure.

The modification of lattice parameters Li_3P under pressure in situ (some cycles "loading - reloading") is shown.

Sodium antimonide and sodium bismuthide undergoes converted phase transitions of a hexagonal structure in cubic one at pressure 2.3 and 0.75 GPa accordingly at room temperature, confirms data of

work [3].

The phases of high pressure of these compounds remained steady at high pressure only. The full reloading reduced in returning in initial hexagonal structure.

Fig 2. Dependence of lattice parameters Na₃Bi (□) and Na₃Sb (•) from pressure.

It is shown (fig 2), that the parameter of a cubic lattice Na_3Sb varies less sharply on a comparison with a modification of lattice parameter Na_3Bi .

References

- 1. Gnutzmann V.G., Dorn F.W., Klemm W. // Z. Anorg. Allgem. Chem. 1961. V.309. N 3-4. P.210-225.
- 2. *Mitrokhina S.V., Burdina K.P., Semenenko K.N.* The new modification of Li₃N // Vestnik Moskovskogo universiteta. Seriya 2. Chimiya. 1990. V.31. N 6. P.612-614 (in Russian).
- 3. Beister H.J., Klein J., Schewe I., Syassen K. // High Pres. Res. 1991. V.7. P.91.
- 4. *Khvostantsev L.G., Vereshchagin L.F., Novikov A.P.* // High Temp., High Pressures. 1977. V.9. № 6. P.637-639.
- 5. Degtyareva V.F., Bdikin I., Khasanov S. // Solid State Com. 1996. V.99. N12, P. 907.
- 6. Kalinin V.B., Donchak A.A., Golubev A.M., Kulinich S.A., Burdina K.P., Puriaeva T.P., Butsky V.D. Phase of High Pressure of Lithium Phosphide Li₃P // Materialovedenie. 1999. N2. V.40 (in Russian).