Все о геологии :: на главную страницу! Геовикипедия 
wiki.web.ru 
Поиск  
  Rambler's Top100 Service
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
   Геология >> Инженерная геология | Популярные статьи
 Обсудить в форуме  Добавить новое сообщение

МИКРОМИР   ГЛИНИСТЫХ  ПОРОД

В.Н. СОКОЛОВ. Московский государственный университет им. М.В. Ломоносова
Опубликованно в Соросовском Образовательном Журнале, N3, 1996, cтр.56-64

Оглавление

 


МИКРОСТРУКТУРА ГЛИНИСТЫХ ПОРОД

    Наряду с минеральным составом, исследование которого с помощью ПЭМ описано выше, другим важным фактором, определяющим многие свойства глинистых пород, является их микроструктура. Под микроструктурой будем понимать размер и форму глинистых частиц и микроагрегатов (совокупностей частиц), их взаимную ориентацию и тип структурных связей (то есть сил, действующих на контактах между твердыми структурными элементами) [4]. Микроструктура глинистых пород очень чувствительна к изменению условий накопления минерального осадка и его последующих геологических преобразований. С точки зрения одного из основоположников отечественной инженерной геологии И.В. Попова, микроструктура отражает влияние различных физико-химических факторов на процессы структурообразования. Таким образом, микроструктура является своеобразной "фотографией" тех условий, в которых сформировалась данная глинистая порода. В ней за счет специфического сочетания различных морфометрических (размер, форма, характер поверхности структурных элементов, их количественное соотношение), геометрических (пространственное расположение структурных элементов) и энергетических (структурные связи) признаков как бы заложена информация о прочности и деформационном поведении породы, о возможном характере изменения под действием тех или иных условий. Таким образом, решая обратную задачу и количественно определяя соответствующие микроструктурные параметры, можно не только предсказывать многие свойства глинистых пород, но и дать достоверный прогноз их изменения при различных воздействиях. Подобная информация чрезвычайно важна при изысканиях и строительстве различных инженерных сооружений, при решении многих природоохранных и экологических задач.


Устройство и принцип действия растрового электронного микроскопа

    К сожалению, до середины 50-х годов у исследователей не было достаточно надежного инструмента для изучения тончайшей структуры, то есть микроструктуры глинистых пород, так как световая оптика не обеспечивала требуемого разрешения, чтобы изучать морфологию глинистых частиц и их микроагрегатов, тип контактов между ними, характер порового пространства, ориентацию частиц в пространстве. Просвечивающий электронный микроскоп, хотя и дает высокое разрешение, обычно применяется для изучения кристаллографических особенностей глинистых частиц; с его помощью изучают отдельные твердые структурные элементы, специально извлеченные для этого из породы.
    Принципиально новый этап в исследовании глинистых пород начался в конце 50-х годов, когда стали использовать растровую электронную микроскопию. Растровый электронный микроскоп (РЭМ) построен аналогично ПЭМ, но в отличие от него имеет подвижный исследовательский зонд - тонкосфокусированный пучок электронов. При этом используется телевизионный принцип развертки пучка в растр (в кадр). Отсюда и название - растровый электронный микроскоп. В англоязычных странах используется другое название - сканирующий электронный микроскоп (СЭМ), имея в виду, что пучок электронов сканирует, то есть пробегает по некоторому участку поверхности образца.
Процесс сканирования электронного зонда осуществляется с помощью специального устройства - отклоняющих катушек, на которые подается знакопеременный потенциал. На пути следования пучка имеются две пары взаимно перпендикулярных отклоняющих катушек, которые осуществляют кадровую (вертикальную) и строчную (горизонтальную) развертки пучка. В отличие от ПЭМ с помощью РЭМ можно исследовать массивные (объемные) образцы.
    В основе работы РЭМ лежит следующее физическое явление. При соударении электронного зонда с поверхностью массивного образца в его приповерхностной области формируется так называемая зона генерации сигналов, имеющая грушевидную форму [5]. При этом из зоны генерации начинается эмиссия различных сигналов, в том числе оже-электронов, вторичных электронов, отраженных электронов, характеристическое рентгеновское излучение и др. [5]. Каждый из этих сигналов несет определенную информацию о составе и строении образца. Например, с помощью характеристического рентгеновского излучения можно определить, из каких химических элементов состоит образец; оже-электроны позволяют узнать химический состав тончайшего (до 10 ангстрем) поверхностного покрытия и т.д. Ученых, изучающих микроструктуру образцов, больше всего интересует сигнал вторичных электронов. Дело в том, что этот сигнал, большая часть которого состоит из медленных электронов с энергиями до 50 эВ, несет в себе информацию о морфологии поверхности исследуемого образца. Энергия вторичных электронов пропорциональна углу наклона элементарной площадки на поверхности образца, из которой они вылетают. Собирая эти электроны и детектируя их по энергиям, можно получить изображение элементарной площадки в данной точке в виде пятна определенной яркости.
    В РЭМ пучок электронов сканирует по поверхности образца, то есть дискретно построчно "обегает" всю исследуемую поверхность, выбивая в каждой точке вторичные электроны. Детектируя по энергиям суммарный сигнал вторичных электронов, можно воссоздать картину распределения элементарных площадок по всей поверхности образца в виде последовательности точек различной яркости.
Теперь рассмотрим процесс визуализации поверхности в РЭМ. Сигнал вторичных электронов регистрируется детектором и после усиления модулирует локальную яркость на экране телемонитора, развертка которого синхронна со смещением электронного зонда по поверхности образца. Таким образом, каждый элемент поверхности образца находится во взаимно однозначном соответствии с яркостью определенного места на экране. Так как яркость элементарной площадки поверхности образца зависит от наклона относительно освещающего ее света (падающего пучка электронов) и так как РЭМ имеет очень большую глубину фокуса, то полутоновое изображение, возникающее на экране микроскопа, воспринимается глазом как объемное.
    Увеличение прибора определяется соотношением амплитуд развертки луча по экрану микроскопа и на образце. Чем меньше амплитуда развертки зонда на образце, тем больше увеличение, и наоборот.

Назад| Следующая страница


 См. также
Популярные статьиКоличественный анализ микроструктуры горных пород по их изображениям в растровом электронном микроскопе.: ЛИТЕРАТУРА

Проект осуществляется при поддержке:
Геологического факультета МГУ,
РФФИ
   

TopList Rambler's Top100