Все о геологии :: на главную страницу! Геовикипедия 
wiki.web.ru 
Поиск  
  Rambler's Top100 Service
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
   Геология >> Геохимические науки >> Минералогия | Курсы лекций
 Обсудить в форуме  Добавить новое сообщение

Школьникам и первокурсникам о минералогии

Автор: А. А. Ульянов ulyanov@geol.msu.ru Использованные иллюстрации любезно предоставлены журналом "Мир камня". Содержание

Классификация минералов

В основе современной классификации минералов лежат химические и структурные признаки. Все известные минералы группируются в несколько классов, главнейшими из которых являются: 1) самородные элементы и интерметаллические соединения, 2) сульфиды и их аналоги, 3) галогениды, 4) оксиды и гидроксиды, 5) соли кислородных кислот. В пределах классов минералов выделяют подклассы, а внутри последних - группы. Краткое описание главных классов и подклассов минералов приведено ниже.

Золото
Алмаз
Серебро

Самородные элементы и интерметаллические соединения. На сегодняшний день в природе известно более 30 элементов, находящихся в самородном состоянии. Однако число минералов принадлежащих классу самородных существенно больше, что связано с образованием разнообразных сплавов, интерметаллидов и амальгам. Если исключить из рассмотрения водород, азот, кислород и благородные газы, то все оставшиеся самородные элементы можно подразделить на три главных подкласса - металлы (медь, золото, серебро, платина), полуметаллы (мышьяк, сурьма) и неметаллы (сера, графит, алмаз).

Пирит
Галенит

Сульфиды и их аналоги. К рассматриваемому классу относятся сернистые, селенистые, теллуристые, мышьяковистые и сурьмянистые соединения металлов и полуметаллов. Наибольшее число минералов представлено сернистыми соединениями - сульфидами и сульфосолями. Около 40 химических элементов образуют в природе более 300 минералов, принадлежащих этому классу. Сульфиды представляют особый интерес как руды цветных металлов и часто как носители золота. Большинство сульфидов образуется из горячих водных (гидротермальных) растворов. Некоторые сульфиды могут кристаллизоваться из магмы, другие имеют осадочное происхождение. В земной коре наиболее широко распространены сульфиды железа (пирит - FeS2), меди (халькопирит - CuFeS2), свинца (галенит - PbS), цинка (сфалерит - ZnS) и некоторые другие.

галит флюорит криолит

Галогениды. К классу галогенидов относится приблизительно 100 минералов, представляющих собой соли галогеноводородных кислот HF, HCl, HBr и HI. Наиболее распространены хлориды Na, K и Mg (галит - NaCl, сильвин - KCl, карналит - MgCl2.KCl.6H2O), фториды Ca, Na и Al (флюорит - CaF2, криолит - Na3AlF6). Галогениды имеют небольшое значение как породообразующие минералы, но очень важны в общегеологическом и практическом отношениях.

кварц

Окисиды и гидроксиды. Минералы этого класса очень широко распространены в природе и играют большую роль в сложении земной коры. Оксиды и гидроксиды образованы примерно тридцатью химическими элементами. Сейчас известно около 200 минералов, представляющих собой оксиды или гидроксиды металлов, реже полуметаллов и металлоидов. Все они соответствуют примерно 5 % от общего веса литосферы. Наиболее многочисленны оксиды, содержащие железо. Свободная SiO2 существует в природе главным образом в виде кварца и его разновидностей и очень широко распространена в земной коре. По своей кристаллохимии кварц тесно связан с силикатами, поэтому современная классификация минералов допускает рассмотрение кварца не в классе оксидов, а в классе силикатов.

Почти все относящиеся к рассматриваемому классу соединения обладают кристаллическими структурами, для которых характерен ионный тип связи. В кристаллических структурах оксидов и гидроксидов катионы всегда находятся в окружении анионов кислорода или гидроксила (ОН)-, и координация металлов и полуметаллов является важнейшей характеристикой этих минералов.

Значительное число оксидов и гидроксидов представляют собой продукты экзогенных процессов, протекающих в самых верхних частях земной коры при непосредственном участии  свободного кислорода атмосферы. В глубинных условиях образуются разнообразные оксиды Fe, Ti, Ta, Nb, р. з. э., Al, Cr, Be, Sn, U и других элементов. Происхождение некоторых оксидов и гидроксидов связано с  гидротермальным процессом минералообразования. Ряд минералов, относящихся к рассматриваемому классу, возникают в результате метаморфических и метасоматических процессов, а также как продукты фумарольной деятельности. Наряду с упомянутыми выше кварцем и халцедоном в природе относительно широкое распространение получили также гематит - Fe2O3, магнетит - Fe2+Fe23+O4, пиролюзит - MnO2, касситерит - SnO2, рутил - TiO2, корунд - Al2O3, куприт - Cu2O, ильменит - FeTiO3, шпинель - MgAl2O4, хризоберилл - BeAl2O4, хромит - FeCr2O4, колумбит - (Fe,Mn)Nb2O6, танталит - (Fe,Mn)Ta2O6, уранинит - UO2, опал - SiO2.nH2O, брусит - Mg(OH)2, гидраргиллит - Al(OH)3, гетит - HFeO2, гидрогетит - HFeO2.nH2O и некоторые другие.

hematite-08-19.JPG (53818 bytes)

 

 


гематит

magnetite-56-54.JPG (45844 bytes)

 

 

магнетит

pyrolusite-02-53.JPG (58197 bytes)

 

 

пиролюзит

cassiterite-01-17.JPG (43127 bytes)

 

 

 

касситерит

rutile-10-24.JPG (57783 bytes)

рутил

corundum-02-03.JPG (58796 bytes)

корунд

ilmenite-02-55.JPG (50718 bytes)

ильменит

spinel-12-43.JPG (67418 bytes)

шпинель

opal-07-36.JPG (62027 bytes)

опал

brucite-10-48.JPG (52706 bytes)

брусит

Соли кислородных кислот. В этот класс минералов входят соли различных кислородных кислот, главными из которых являются угольная (карбонаты), серная (сульфаты), фосфорная (фосфаты) и кремневая (силикаты), выделяемые в виде отдельных подклассов. Карбонаты и силикаты имеют особенно большое значение как породообразующие минералы. Учитывая сложность и важность рассматриваемого класса минералов целесообразно привести краткое описание каждого из отдельных подклассов.

Кальцит
Малахит

Карбонаты. Из неорганических соединений углерода в природе известно около ста минералов, большая часть из которых относится к солям угольной кислоты (H2CO3) и получила название карбонатов. Эти минералы очень широко распространены в верхней части литосферы и среднее их содержание в земной коре составляет 1,5 мас.%. В структуре карбонатов анионные группы [CO3]2- в форме плоских треугольников изолированы друг от друга катионами или дополнительными анионами. Обычно карбонаты подразделяются на безводные и водные. К безводным карбонатам относятся такие породообразующие минералы как кальцит - CaCO3, магнезит - MgCO3, доломит - CaMg(CO3)2, сидерит - FeCO3, основные карбонаты меди: малахит - Cu2(CO3)(OH)2 и азурит - Cu3(CO3)2(OH)2 , в которых вхождение гидроксил-иона (ОН)- компенсирует избыточный заряд катионов; к водным - сода - Na2[CO3].10H2O. Цвет карбонатов, как и большинства других минералов, зависит от вхождения в структуру ионов-хромофоров. Медные карбонаты зеленые или синие; урановые - желтые; карбонаты, содержащие железо или редкоземельные элементы, окрашены в коричневатые цвета, но большинство карбонатов белые или бесцветные. Твердость карбонатов обычно составляет 3-5. Удельный вес

Азурит

меняется в широких пределах в зависимости от химического состава минералов. Самый легкий из карбонатов - сода; наибольшим удельным весом обладают карбонаты висмута и свинца. Большинство карбонатов относительно хорошо растворяются в воде богатой свободной углекислотой по схеме СаСО3 + СО2 + Н2О Са(НСО3)2; некоторые из них интенсивно вскипают в разбавленной (10 %) соляной кислоте, выделяя при этом пузырьки СО2. Условия протекания реакции с кислотой (кусочки или порошок исходного минерала, интенсивность разложение при нагревании и без него) являются одним из основных диагностических свойств при идентификации широко распространенных карбонатов кальция, магния и железа. Из оптических свойств для карбонатов характерно весьма высокое двулучепреломление - следствие наличия в структуре этих минералов плоских групп [CO3]2-. В большинстве случаев карбонаты образуются в гипергенных процессах (хотя известны и магматические карбонаты). Происхождение некоторых карбонатов, например, кальцита в известняках, связано с жизнедеятельностью организмов. Гидротермальные карбонаты распространены в жилах, контактово-метасоматических зонах, в отложениях минеральных источников, в миндалинах вулканических пород. Многие карбонаты имеют практическое значение как руды на железо, цинк, свинец и медь. Плотные массивные карбонатные породы - известняки, мраморы, доломиты - используются в качестве строительного материала.

Гипс барит целестин англезит

Сульфаты, хроматы, молибдаты и вольфраматы. Сульфаты - минералы, представляющие собой соли серной кислоты (H2SO4), могут образовываться в природе лишь в условиях повышенной концентрации кислорода, необходимой для перевода серы в высшую степень окисления (S6+) и при относительно низких температурах. Такие условия в земной коре создаются вблизи поверхности, где и встречается основная масса сульфатов. В природе известно около 300 минералов, относящихся к этому классу соединений, но по массе они составляют менее 0,1 % веса земной коры. В структурном отношении комплексный анион [SO4]2- характеризуется крупным размером. Поэтому образование устойчивых кристаллических структур возможно лишь при сочетании этого аниона с крупными двухвалентными катионами (Ba2+, Sr2+, Pb2+). Структуры сульфатов, катионы которых имеют небольшие радиусы, могут образовываться практически только при наличии молекул воды, которые располагаются в свободном пространстве. Одновалентные катионы щелочных металлов образуют слабые кристаллические структуры и, подобно сульфатам двухвалентных малых катионов, легко растворяются в воде. Сульфаты трехвалентных металлов встречаются только в виде водных соединений. Среди сульфатов широкое распространение получили двойные и более сложные соли одно-, двух- и трехвалентных металлов. Часто встречаются сульфаты с добавочными анионами (OH-, Cl-, CO32-, PO43- и др.). Характерной особенностью всех сульфатов является их небольшая твердость (меньше 3,5). Наиболее часто в природе встречаются следующие сульфаты: гипс - CaSO4.2H2O, ангидрит - CaSO4, барит - BaSO4, целестин - SrSO4, англезит - PbSO4, тенардит - Na2SO4, мирабилит - Na2SO4.10H2O, алунит - KAl3(SO4)2(OH)6 и ярозит - KFe3(SO4)2(OH)6.

Хроматы - представители солей ортохромовой кислоты (H2CrO4) - очень редки. Они встречаются в зонах окисления некоторых полиметаллических месторождений, классическим из которых является Березовское на Среднем Урале. Именно в хромате из этого месторождения - крокоите - PbCrO4 в 1797 г. был открыт химический элемент хром.

Вульфенит

Большинство молибдатов - солей молибденовой кислоты (H2MoO4) - являются гипергенными минералами, образующихся в зонах железных шляп рудных месторождений в результате окисления молибденита (MoS2). Наиболее распространенные молибдаты (вульфенит - PbMoO4, ферримолибдит - Fe23+[MoO4]3.7H2O) имеют большое поисковое значение.

 

фольфрамит
фольфрамит шеелит

Вольфраматы - соли вольфрамовой кислоты (H2WO4) в природе немногочислены. Однако в рассматриваемый подкласс входят два промышленно важных рудных минерала - вольфрамит - (Fe,Mn)WO4 и шеелит - CaWO4, имеющих глубинное происхождение.

Апатит

Фосфаты, арсенаты и ванадаты. В природе установлено более 450 минеральных видов, принадлежащих солям ортофосфорной (H3PO4), мышьяковой (H3AsO3) и ванадиевой (H3VO3) кислот. Распространенность этих минералов в земной коре относительно невелика и составляет около 0,7 % по массе. Все фосфаты, арсенаты и ванадаты подразделяются на безводные и водные. Сравнительно крупные размеры трехвалентных анионов [PO4]3-, [AsO4]3- и [VO4]3- обусловили устойчивость в природе безводных соединений типа R3+[XO4], где X = P, As или V, а R3+ - крупные трехвалентные ионы, например, редкоземельных элементов: церия в монаците - Ce[PO4] или иттрия в ксенотиме - Y[PO4]. Наиболее устойчивыми в земной коре фосфатами двухвалентных металлов также являются соединения с относительно крупными катионами (Ca2+, Sr2+), но с уже дополнительными анионами (OH-, F-, Cl- и др.); примером может служить апатит - Ca5[PO4]3(F,Cl,OH). Для арсенатов и ванадатов характерны соединения со свинцом, причем добавочным анионом служит Cl-, как, например, в миметезите - Pb5[AsO4]3Cl или в ванадините - Pb5[VO4]3Cl. Элементы с относительно маленькими ионными радиусами образуют, как правило, соединения, содержащие существенное количество молекул H2O. Особое положение по составу среди водных фосфатов, арсенатов и ванадатов занимают, так называемые, урановые слюдки - двойные соли уранил-иона (UO2)2+ и двухвалентных металлов (главным образом, Cu2+ и Са2+): торбернит - Cu(UO2)2[PO4]2.12H2O, отунит - Ca(UO2)2[PO4]2.10H2O, тюямунит - Ca(UO2)2[VO4]2.8H2O и другие. Многие водные соединения или соли основного типа, относящиеся к фосфатам и их аналогам, являются редкими или очень редкими минералами. Представители группы имеют в большинстве случаев гипергенное происхождение - образуются в близповерхностных условиях в результате разложения органических остатков (фосфаты), окисления мышьяковых соединений (арсенаты) и за счет рассеянного в осадочных породах ванадия (ванадаты). Некоторые фосфаты образуются магматическим путем. Наибольшее распространение и значение получили фосфаты, а среди последних - апатит. Он встречается во многих типах магматических и метаморфических пород и используется как сырье для производства фосфорных удобрений.

Силикаты представляют собой наиболее многочисленный подкласс минералов и слагают около 90 % массы вещества земной коры. Они входят в состав многих горных пород. Одним из главных элементов в составе силикатов является кремний, для которого характерна связь с кислородом. Кремний практически всегда четырехвалентный с ионным радиусом для Si4+, равным 0,39 А, что позволяет ему находиться в окружении четырех атомов кислорода, расположенных в вершинах тетраэдра (рис. 9). Такая тетраэдрическая группировка [SiO4]4- - кремнекислородный тетраэдр - является основой, своеобразным "элементарным кирпичиком", для описания структур всех силикатов. Расстояние Si-O в тетраэдре равно 1,62 А, а между двумя атомами кислорода 2,65 А. Группа [SiO4]4- обладает четырьмя свободными валентными связями, за счет которых происходит присоединение ионов других химических элементов (обычно Al, Fe, Mg, Ca, Na, K, реже Mn, Ti, B, Zr, Li и др.). Кремнекислородные тетраэдры в структурах силикатов могут быть обособленными один от другого, а могут и соединяться между собой за счет общего иона кислорода (рис. 10). Соединение кремнекислородных тетраэдров практически всегда происходит через их вершины, при этом могут образовываться довольно сложные кремнекислородные кластеры. Силикаты в структуре которых кремнекислородные тетраэдры [SiO4] или кластеры (например, группа сдвоенных тетраэдров [Si2O7] или кольцевой радикал [Si6O18]) находятся в виде изолированных "островов" получили название островные силикаты. Многократно повторяющиеся присоединения тетраэдров друг к другу могут привести к возникновению "бесконечных" одномерных цепочек или лент, двумерных плоскостей или трехмерных каркасов. По форме бесконечно вытянутых построек из кремнекислородных тетраэдров силикаты подразделяются на цепочечные, ленточные, слоистые (листовые) и каркасные (рис. 10). Примеры наиболее широкораспространенных породообразующих силикатов приведены в следующей таблице.

Островные силикаты Оливин, гранаты
Цепочечные силикаты Пироксены
Ленточные силикаты Амфиболы
Слоистые силикаты Тальк, серпентин, каолин, слюды, хлориты
Каркасные силикаты Полевые шпаты, фельдшпатоиды, (кварц)

Среди класса солей кислородных кислот выделяют также бораты, иодаты и некоторые другие. Заинтересованный читатель может найти сведения о представителях этих классов минералов в дополнительной литературе, список которой приведен в конце статьи.

далее>>


Проект осуществляется при поддержке:
Геологического факультета МГУ,
РФФИ
   

TopList Rambler's Top100