Ю. И. Галушкин, Е. П. Дубинин,
А. А. Свешников, С. А. Ушаков
Московский государственный
университет им. М. В. Ломоносова, Музей
землеведения
Опубликовано:"Российский журнал
наук о Земле" том 2, N4, Декабрь 2000 |
Содержание |
Галушкин Ю. И., Дубинин Е. П., Модель образования
и развития магматической камеры рифтовых зон
срединно-океанических хребтов, ДАН РАН, 332, (4),
496-499, 1993.
Галушкин Ю. И., Дубинин Е. П.,
Магматическая камера рифтовых зон
срединно-океанических хребтов: термическая
модель формирования и эволюции, Вулканология и
сейсмология, (4-5), 90-98, 1994.
Галушкин Ю. И., Дубинин Е. П.,
Шеменда А. И., Термическая структура осевой
зоны срединно-океанического хребта, Статья 1,
Формирование и эволюция осевой магматической
камеры, Изв. АН РАН, Сер. Физика Земли, (5), 11-19,
1994а.
Галушкин Ю. И., Дубинин Е. П.,
Шеменда А. И., Термическая структура осевой
зоны срединно-океанического хребта, Статья 2,
Влияние линзы расплава на форму и эволюцию
магматической камеры, Изв. АН РАН, Сер. Физика
Земли, (5), 19-26, 1994б.
Дубинин Е. П., Трансформные разломы
океанической литосферы, 180 c., Московский
ун-т, Москва, 1987.
Дубинин Е. П., Свешников А. А.,
Эволюция литосферы палеоспрединговых хребтов,
(Результаты математического моделирования), Геотектоника,
(3), 72-90, 2000.
Карслоу Г., Егер Д., Теплопроводность
твердых тел, c. 487, Наука, Москва, 1964.
Сорохтин О. Г., Зависимость
топографии срединно-океанических хребтов от
скорости раздвижения литосферных плит, ДАН
СССР, 208, (6), 1338-1341, 1973.
Теркот Д., Шуберт Дж., Геодинамика,
731 c., Мир, Москва, 1985.
Ушаков С. А., Галушкин Ю. И.,
Дубинин Е. П., Гапоненко Г. И.,
Иванов О. П., Иванов С. С.,
Каверзнев К. М., Шимараев В. Н., Гравитационное
поле и рельеф дна Мирового океана, 296 c.,
Недра, Л., 1979.
Barnouin-Jha K., Parmentier E. M. and Phipps Morgan J., The
role of mantle-depletion and melt-retention buoyancy in spreading-center segmentation, Earth
Planet. Sci. Lett., 125, 221-234, 1994.
Barnouin-Jha K., Parmentier E. M. and Sparks D. W.,
Buoyant mantle upwelling and crustal production at oceanic spreading centers: on-axis
segmentation and off-axis melting, J. Geophys. Res., 102, (B6), 11,979-11,989,
1997.
Chen Y. and Morgan W. J., A nonlinear rheology model for
mid-oceanic ridge axis topography, J. Geophys. Res., 95, 17,583-17,604, 1990.
Chen Y. J. and Phipps Morgan J., The effect of spreading
rate, the magma budget, and the geometry of magma emplacement on the axial heat flux at
mid-oceanic ridges, J. Geophys. Res., 101, (B5), 11,475-11,482, 1996.
Combarnous M., Natural convection in porous media and geothermal
systems, in: Int. Heat Transfer Conf., 6-th, p. 45-59, 1978.
Cordery M. J. and Phipps Morgan J., Melting and mantle flow
beneath a mid-oceanic spreading center, Earth Planet. Sci. Lett., 111, 493-516,
1992.
Cordery M. J. and Phipps Morgan J., Convection and melting at
mid-oceanic ridges, J. Geophys. Res., 98, (B11), 19,477-19,503, 1993.
Eberle M. A. and Forsyth D. W., An alternative, dynamic model of
the axial topographic high at fast spreading ridges, J. Geophys. Res., 103, (B6),
12,309-12,320, 1998.
Hardee H. C., Permeable convection above magma bodies, Tectonophysics,
84, 179-195, 1982.
Henstock T. J., Woods A. W. and White R. S., The
accretion of oceanic crust by episodic dill intrusion, J. Geophys. Res., 98, (B3),
4143-4161, 1993.
Kieffer S. W., Lattice thermal conductivity within the Earth and
consideration of a relationship between the pressure dependence of the thermal diffusity
and the volume dependence of the Greeneisen parameter, J. Geophys. Res., 81,
3025-3030, 1976.
Lin J. and Parmentier E. M., Mechanisms of lithosphere extension
at mid-oceanic ridges, Geophys. J., 96, 1-22, 1989.
MacDonald G. J., Calculations of the thermal history of the Earth,
J. Geophys. Res., 64, (11), 1967-2000, 1959.
Magde L. S. and Sparks D. W., Three-dimensional mantle upwelling,
melt generation, and melt migration beneath segment slow spreading ridges, J. Geophys.
Res., 102, (B9), 20,571-20,583, 1997.
Makhous M., Galushkin Yu. I. and Lopatin N. V., Burial
history and kinetic modelling for hydrocarbon generation, Part I: The GALO Model, AAPG
Bull., 81, (10), 1660-1678, 1997.
McKenzie D. P., Some remarks on heat-flow and gravity anomalies, J.
Geophys. Res., 72, (24), 1967.
McKenzie D. and Weiss N., Speculations on the thermal and tectonic
history of the Earth, Geophys. J. Roy. Astron. Soc., 42, p. 131, 1975.
Morton J. L. and Sleep N. H., A mid-oceanic ridge thermal model
constraints on the volume of axial hydrothermal heat flux, J. Geophys. Res., 90,
(B13), 11,345-11,353, 1985.
Neumann G. A. and Forsyth D. W., The paradox of the axial profile:
isostatic compensation along the axis of the Mid-Atlantic Ridge, J. Geophys. Res., 98,
(B10), 17,891-17,910, 1993.
Oldenburg D. W., A physical model for the creation of the
lithosphere, Geophys. J. Roy. Astr. Soc., 43, p. 425, 1975.
Parker R. L. and Oldenburg D. W., Thermal model of oceanic ridges,
Nature Physics Sci., 242, p. 137, 1973.
Parson B. and Sclater I. C., An analysis of the variation of
oceanic floor bathimetry and heat flow with age, J. Geophys. Res., 82, 803-820,
1977.
Phipps Morgan J. and Chen Y. J., The genesis of oceanic crust:
magma injection, hydrothermal circulation, and crustal flow, J. Geophys. Res., 98,
(B4), 6283-6297, 1993.
Phipps Morgan J., Parmentier E. M. and Lin J., Mechanisms for
the origin of mid-oceanic ridge topography: implications for the thermal and mechanical
structure of accreting plate boundaries, J. Geophys. Res., 92, (B12),
12,823-12,836, 1987.
Schatz J. F. and Simmons G., Thermal conductivity of Earth
materials at high temperatures, J. Geophys. Res., 77, (35), 6966-6983, 1972.
Schubert G., Froidevaux C. and Yuen D. A., Oceanic
lithosphere and astenosphere: thermal and mechanical structure, J. Geophys. Res., 81,
p. 3525, 1975.
Sleep N. H., Segretation of magma from a mostly crystalline mush, Geol.
Soc. Amer. Bull., 85, p. 1225, 1974.
Sleep N. H., Formation of oceanic crust: some thermal constraints,
J. Geophys. Res., 80, p. 4037, 1975.
Sleep N. H., Morton J. L., Burns L. E. and
Wolery Th. J., Geophysical constraints of the volume of hydrothermal flow at
ridge axis, in: Hydrothermal processes at sea floor spreading centers; NATO conference
marine sciences 12, ed. by Rona P. A. et al., p. 53-68, New York, 1983.
Sotin C. and Parmentier E. M., Dynamical consequences of
compositional and thermal density stratification beneath spreading centers, Geophys.
Res. Letters, 16, (8), 835-838, 1989.
Sparks D. W. and Parmentier E. M., Melt extraction from the mantle
beneath spreading centers, Earth Planet. Sci. Lett., 105, 368-377, 1991.
Sparks D. W. and Parmentier E. M., The structure of
three-dimensional convection beneath oceanic spreading centers, Geophys. J. Int., 112,
81-91, 1993.
Sparks D. W., Parmentier E. M. and Phipps Morgan J.,
Three-dimensional mantle convection beneath a segmented spreading center: implications for
along-axis variations in crustal thickness and gravity, J. Geophys. Res., 98,
(B12), 21,977-21,995, 1993.
Spiegelman M. and McKenzie D., Simple 2-D models for melt
extraction at mid-ocean ridges and island arcs, Earth Planet. Sci. Lett., 83,
137-152, 1987.
Ungerer P., Burrus I., Doligez B., Chenet P. and
Bessis F., Basin evolution by integrated two-dimensional modelling of heat transfer,
fluid flow, hydrocarbon generation, and migration, AAPG Bull., 74, (3), 309-335,
1990.
Usselman T. M. and Hodge D. S., Thermal control of low-pressure of
reactionation processes, J. Volcan. Geotherm., Res., 4, 265-281, 1978.
Watts A. B., Gravity anomalies over oceanic rifts, in: Oceanic
and continental rifts, Geodyn. ser., ed. by G. Palmason, v. 8,
p. 99-106, AGU, Washington, D.C., 1982.
Wilson D. S., Clague D. A., Sleep N. H. and
Morton J. L., Implications of magma convection for the size and temperature of
magma chambers at fast spreading ridges, J. Geophys. Res., 93, (B10),
11,974-11,984, 1988.
|