Все о геологии :: на главную страницу! Геовикипедия 
wiki.web.ru 
Поиск  
  Rambler's Top100 Service
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
   Геология >> Литология | Обзорные статьи
 Обсудить в форуме  Добавить новое сообщение

Океанское марганценакопление в свете исторической тектоники

Е. С. Базилевская, Ю. М. Пущаровский

Геологический институт РАН

Опубликовано:"Российский журнал наук о Земле" Том1, N3, Февраль 1999

Содержание:


1. Геохимические аспекты

Рассмотрим основные аспекты геохимии главных рудообразующих металлов ЖМО. Казалось бы, что само название этих стяжений свидетельствует о геохимической близости свойств главных рудообразующих металлов - Fe и Mn. Но это не совсем так. Еще В. И. Вернадский отмечал, что в природе в зоне гипергенеза нет ни одного железо-марганцевого минерала. Кроме того железистые и марганцеворудные формации на суше хотя и сопутствуют друг другу, но всегда разделены во времени и пространстве. Это связано с разницей в стандартных потенциалах окисления - более низком у Fe и высоком у Mn. Поэтому Fe окисляется легче Mn и соответственно раньше образует окисные твердофазные соединения.

В океанской среде Fe образует нерастворимые твердофазные соединения как в окисленной, так и в восстановленной осадочной толще, в то время, как Mn в твердой фазе может существовать только в окисленных условиях. Из восстановленных осадков растворенный Mn мигрирует к поверхности дна и в конечном счете в благоприятных фациальных условиях (высокие содержания растворенного кислорода в морской воде и низкие скорости седиментации) формирует рудные отложения в двух основных формах: железо-марганцевые конкреции (ЖМК) и корки.

Разница в геохимических свойствах этих металлов приводит к тому, что если в горных породах, являющихся источником металлов для ЖМО, среднее отношение Mn/Fe составляет 0,017, то в ЖМК эта величина почти на два порядка выше и равна 1,44 [Андреев, 1994]. Иными словами, главным итогом океанского рудогенеза является колоссальное накопление Mn на фоне существенного снижения роли Fe. Откуда же берутся такие количества Mn, если известно, что в породах земной коры Mn находится в ничтожных количествах в рассеянном состоянии и не образует ни одного самостоятельного минерала. На этот счет есть две точки зрения. В соответствии с одной, в процессе выветривания пород суши в океан реками сносятся огромные массы осадков, иногда формирующих области так называемой лавинной седиментации до нескольких километров мощностью. При быстром накоплении осадков в их толще возникают восстановительные условия, в которых Mn растворяется и мигрирует вверх, обогащая окисленные слои осадков и придонную воду, откуда поступает в океан (диагенез). Fe в восстановительных условиях может осаждаться в форме сульфидных минералов, входить в состав соответствующих глинистых минералов и др., и таким образом, частично выводиться из процесса океанского рудообразования. Это первый этап разделения Mn и Fe в океанской среде и относительного увеличения отношения Mn/Fe. Зона распространения восстановленных осадков охватывает значительную часть периферии океанов и это свидетельствует о масштабах описанного процесса. В дальнейших путях миграции рудного вещества в океанские области, благоприятные для отложения ЖМО, происходит дальнейшее изменение указанного отношения по причине, в частности, различий в величинах стандартных потенциалов окисления Mn и Fe.

Заметим, что процессы выветривания или гальмиролиза происходят и на океанском дне. Они также могут приводить к высвобождению рудных металлов из коренных пород, выходы которых обычно покрыты Fe-Mn корками. Однако, количественно оценить этот источник металлов в отношении Mn не позволяет то обстоятельство, что при гальмиролизе происходит разрушение и раздробление пород, увеличение их удельной поверхности, что само по себе способствует усилению осаждения на них не только Mn, но и Cu, Ni и Co. Соответствующие данные приводятся в работе Т. И. Фроловой с соавторами [Фролов и др., 1979]. В табл. 2 показана связь петрологического состава пород и состава перекрывающих их корок. Как видно, существенных колебаний здесь не выявляется. Незначительное уменьшение отношения Mn/Fe в базальтах отдельных разломных зон связано скорее с их тектоническим положением в разломной зоне.

Процентные содержания Mn в воде океана - 27·10-10, а Fe - 56·10-10, что дает величину Mn/Fe 0,48 [Батурин, 1993]. Интересно, что, как показали наши исследования, близкое к этому соотношение характерно для многих рудных корок, формирующихся в молодых рифтовых зонах Атлантического океана, что свидетельствует об их существенно гидрогенном формировании [Базилевская, 1995]. Обычно роль Mn в рудных отложениях с этого предела отношений Mn/Fe увеличивается за счет разных факторов, начиная с сорбционного связывания и автокаталитического окисления дополнительных порций самого Mn из морской воды (что характерно для корковых отложений) и кончая особенностями формирования ЖМК, покоящихся на осадочной толще. В этом случае к означенному процессу добавляются диагенетические преобразования в толще окисленного осадка глубоководных областей океана, стимулируемые различиями в физико-химических параметрах осадочной толщи и придонной воды. Разумеется диагенез в этих условиях происходит существенно более медленными темпами, но роль его в формировании ЖМК в зоне геохимического барьера осадок - вода велика, он обусловливает особенности вещественного состава отложений [Базилевская, 1985]. В ходе этого процесса формируются особенно богатые Mn и малыми элементами ЖМК с пониженными содержаниями Fe, поскольку значительная часть его связывается в осадочной толще.

Таким образом, главное геохимическое различие между Mn и Fe в океане сводится к многообразию минеральных форм, в которых Fe выводится из океанского рудогенеза в осадочную толщу как в окислительных, так и в восстановительных условиях, в то время как Mn может находиться в твердофазной форме только в окисленных условиях.

Гидрооксиды Mn, слагающие рудное вещество ЖМО, характеризуются высокой геохимической подвижностью. Это связано с их способностью образовывать смешанновалентные соединения с разной степенью окисления Mn. Обычно в ЖМО фиксируется максимальная степень окисленности Mn, близкая к MnO 2, но, как правило, не достигающая этого предела из-за наличия связанного в гидрооксидах MnO. При изменении физико-химических параметров (а в океанской среде это возможно только в одном направлении - в снижении окисленности), гидрооксиды Mn способны восстанавливать свой состав за счет относительного увеличения доли MnO в соединении MnO ·  MnO 2, сохраняясь в твердой фазе. Однако при полном исчезновении кислорода в морской воде они растворяются. Соответственно при этом высвобождаются и все другие, связанные с рудной фазой, малые элементы.

Есть еще одна важная особенность в геохимии Mn - это стремление его гидрооксидов к отложению на так называемых активных поверхностях, т.е. в зонах геохимических барьеров, которые обычно приурочены к поверхности осадка или обнажениям коренных пород на океанском дне. С этим связано то обстоятельство, что максимальные скопления ЖМО в океанах всегда остаются на поверхности его дна, хотя и не исключается вероятность погребения конкреций в окисленных горизонтах осадка. Таким образом, Mn в значительно большей степени, чем Fe, связан с гидросферой и судьба его полностью контролируется изменениями величин Eh и pH морской воды.

На мобильном океанском ложе вполне вероятны локальные и относительно кратковременные изменения в составе морской воды под воздействием разного рода эндогенных проявлений. К их числу можно отнести подводный вулканизм, рифтовые зоны спрединговых хребтов с гидротермальной активностью, и вообще зоны тектоно-магматической нестабильности. Эндогенная активность в подобных зонах сопряжена с внедрением на океанское ложе высокотемпературных глубинных масс, мгновенно и катастрофически меняющих условия, существовавшие на океанском дне, в частности, резко снижающие содержания кислорода в определенном объеме морской воды, что неизбежно должно приводить к растворению окисных рудных отложений. Несомненно, высокая буферность и колоссальные массы океанских вод способны быстро восстановить природное равновесие при локальном проявлении подобной активности, что характерно для современного этапа развития океана, и соответственно происходит быстрая регенерация ЖМО при нормализации обстановки. Однако состав их может измениться, поскольку возможно связывание части Fe в осадочной толще.

В конце 70-х годов и позже на океанском дне вблизи спрединговых зон Восточно-Тихоокеанского поднятия, а затем и в Атлантике было открыто несколько рудоносных гидротермальных источников с жерлами, сложенными массивными сульфидными рудами. Этому открытию уделяется большое внимание ученых, поскольку появилась простая возможность найти источник поставки металлов на океанское дно, с одной стороны, и приблизиться к разгадке генезиса колчеданных формаций на суше, с другой. Но согласиться с тем, что 90% Mn и все Fe поставлено в океан из спрединговых центров, как это утверждается в [Лисицин и др., 1992], нельзя. На данный момент фактически на весь Мировой океан открыто не более 3-х десятков металлоносных гидротерм, из них меньше половины сопровождаются отложениями массивных руд. Последние нередко располагаются относительно кучно в определенных участках срединных хребтов и связаны, по-видимому, с отдельными очагами глубинной активности.

Заметим, что эта разновидность океанского рудогенеза ни в какой мере не может сопоставляться с масштабами окисного Fe-Mn рудообразования, поскольку она находится в антагонистическом противоречии с высокоокислительной обстановкой океанской среды, которая агрессивна по отношению к восстановленным отложениям и стремится окислить и растворить их. На поверхности океанского дна сульфидные отложения геологически эфемерны и существование их должно поддерживаться непрерывностью гидротермальной деятельности, что противоречит известным фактам о прерывистости этих проявлений. Предположение о том, что сульфидные руды могут сохраняться под окисными Fe-Mn корками, сделанное по аналогии с ситуацией, встречающейся в месторождениях суши, не подтверждено прямыми доказательствами (бурением) и едва ли состоятельно для глубоководных океанских условий.

Все сказанное свидетельствует скорее об экзотическом характере этой разновидности океанских руд и процессов, приводящих к их образрованию и не способных в какой-либо мере повлиять на изменения в среде современного океана, для которой типичным остается окисной Fe-Mn рудогенез.

Как источник рудного вещества гидротермальная поставка несомненно имеет место в отношении металлов, слагающих сульфидные постройки и подверженных неизбежному окислению и растворению в океанской среде. Однако высокая количественная оценка этого вклада для ЖМО сделана чисто умозрительно и с большим преувеличением, особенно в отношении Mn. Она не учитывает особенностей геохимии Mn в океане, а также такого важнейшего фактора, как геологическая длительность океанского рудогенеза. Впрочем, последнее в равной степени относится к проблеме рудогенеза в целом, поскольку практикуемый обычно расчет поставки рудного вещества в океан может быть справедливым только при объективной оценке общей длительности этого процесса, т.е. является предметом рассмотрения геологической истории океанского рудонакопления.

<<назад

вперед>>


Проект осуществляется при поддержке:
Геологического факультета МГУ,
РФФИ
   

TopList Rambler's Top100