Все о геологии :: на главную страницу! Геовикипедия 
wiki.web.ru 
Поиск  
  Rambler's Top100 Service
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
   Геология >> Информационные технологии | Диссертации
 Обсудить в форуме  Добавить новое сообщение

Разработка компьютеризованной технологии одноканальных и многоканальных сейсмоакустических исследований на акваториях

Гайнанов Валерий Гарифьянович
Автореферат диссертации на соискание ученой степени доктора технических наук
содержание

Глава 2. Разработка и совершенствование приемно-регистрирующих систем для сейсмоакустического профилирования на акваториях.

Эта глава посвящена научному обоснованию и разработке компьютеризованных систем для сейсмоакустического профилирования.

В первом параграфе сформулированы требования к приемно-регистрирующим системам для сейсмоакустического профилирования.

Частотный диапазон сигналов в сейсмоакустическом профилировании зависит от глубинности и разрешающей способности исследований, от типа применяемых источников. Наиболее низкочастотные источники - пневматические. Согласно нашим данным основная энергия возбуждаемых ими колебания обычно находится в диапазоне частот 20 - 250 Гц. Наиболее высокочастотные источники - бумеры, возбуждают колебания в диапазоне частот от 200 - 8000 Гц. Полоса возбуждаемых спаркером частот лежит внутри этого диапазона (100 - 1500 Гц).

Шумы буксируемой пьезокосы имеют разную природу. Но наиболее интенсивные шумы возникают из-за флуктуации гидростатического давления вокруг пьезоприемников, происходящего вследствие колебания глубины буксировки косы. Эти шумы имеют максимальную интенсивность в диапазоне низких частот - от долей герц до первых десятков герц. Способ борьбы с ними - оптимально подобранные фильтры высоких частот.

Таким образом, диапазон регистрируемых при сейсмоакустическом профилировании частот может быть ограничен полосой 20 - 8000 Гц.

Динамический диапазон принимаемых сигналов при сейсмоакустическом профилировании определяется рядом факторов: типом и энергией источника волн, длиной и количеством элементов в приемной косе, параметрами системы наблюдений и сейсмогеологическими условиями. Поэтому можно лишь примерно оценить максимальный и минимальный динамические диапазоны.

Наши оценки показывают, что полный динамический диапазон принимаемых сигналов может достигать до 5*106 раз или 130 дб [Полшков и др., 1976; Гайнанов, 1977]. Однако в подавляющем большинстве случаев динамический диапазон регистрируемых сигналов гораздо меньше. Например, при используемой обычно технологии сейсмоакустического профилирования наиболее интенсивной принимаемой волной оказывается не прямая, а отраженная от дна волна. Амплитуда ее при малых глубинах воды также может быть значительной, но при этом и уровень шумов высокий - шумы судна отражаются от дна и принимаются косой без ослабления. В результате динамический диапазон сигналов при сейсмоакустическом профилировании обычно не превышает 60 - 90 дб. Кроме того, он может быть сжат до 40 - 50 дб за счет применения линейной регулировки усиления.

Скорость потока информации при сейсмоакустическом профилировании большая из-за сравнительно высокой частоты принимаемых сигналов и частого повторения циклов возбуждения и приема. Например, при 16-канальной регистрации поток информации может быть выше 600 кбайт/с. Хотя для современных компьютеров эта скорость приема данных и вполне доступная, но с учетом того, что сигнал нужно принять, обработать, визуализировать на экране, записать на диск, распечатать на принтере, могут возникать трудности с использованием ресурсов компьютера. Это ставит ограничения на канальность регистрации и частоту циклов возбуждения. Например, в 16-канальной станции <Нильма> минимальный период регистрации равен 0,9 с.

В 60-е и 70-е годы прошлого века для контроля параметров аппаратуры и принимаемых сигналов требовались специальные осциллографы и генераторы. В современной аппаратуре предусматривают встроенные генераторы, которые подключаются к входу усилителя по командам с компьютера. Программа регистрации визуализирует сигнал в виде временного разреза на экране и на специальном окне в виде осциллограммы, тем самым компьютер объединяет в себе цифровой регистратор, факсимильный регистратор и осциллограф. Он же управляет запуском источников, принимает и регистрирует навигационную информацию.

Во втором параграфе представлены функциональные схемы цифровых регистрирующих трактов сейсмоакустической аппаратуры.

Согласно сформулированным требованиям сейсмоакустический регистрирующий канал должен содержать следующие функциональные узлы: предварительный усилитель с высокоомным дифференциальным входом, фильтр высоких частот (ФВЧ), программный регулятор усиления (ПРУ), основной усилитель, фильтр низких частот (ФНЧ) - антиаляйсинг-фильтр, согласующий каскад, аналого-цифровой преобразователь (АЦП).

В такой схеме, хотя суммарный динамический диапазон и достаточно большой (118 дб), мгновенный динамический диапазон определяется разрядностью АЦП, и в нашем случае (14 разрядов) составляет около 8000 раз (78 дб), что не всегда бывает достаточным. Еще до появления дельта-сигма АЦП с 24 разрядами мы разработали схему многокаскадного усилителя с одновременной оцифровкой сигнала с 3-х последовательно включенных каскадов усиления обычным 14-разрядным АЦП. Программа собирает единый сигнал с учетом коэффициентов усиления каскадов, тем самым обеспечивается динамический диапазон регистрации 8000*40*40=1280000 раз или 120 дб.

В третьем параграфе дано описание управляющей программы для компьютеризованных сейсмоакустических комплексов.

Программа обеспечивает настройку усилителей и фильтров, запуск источников, прием и регистрацию сейсмоакустических данных, навигационной информации, визуализацию данных в виде временных разрезов и как осциллограмм, вывод твердых копий на принтер и ряд вспомогательных функций.

Разработаны программы для одноканальных и многоканальных систем, а также для двухканального профилирования с двумя источниками, возбуждающими упругие импульсы разного частотного состава и с разным периодом возбуждения. Здесь приводится описание последнего варианта.

Запуск источников и регистрации осуществляется от ЭВМ через цифровой блок управления. Минимальный период запуска равен 0,25 с. Период запуска любого источника может увеличиваться кратно этому времени. Источники могут запускаться поочередно, или в любой последовательности.

Цифровое управление делает систему гибкой и удобной в работе. Теперь оператор с одного компьютера может управлять источниками, процессом регистрации и контролировать сигналы по каналам. На экране можно визуализировать временной разрез по первому или второму каналу - по одному из источников, или два разреза одновременно - один по бумеру, другой по спаркеру. На всплывающем окне можно наблюдать форму сигнала по обоим каналам в выбранном диапазоне времен и амплитуд (рис. 1). На экран выводится также вспомогательная информация: номера трасс, время записи, координаты по GPS, значения задержки и т.д.

Прилагаемая программа обработки позволяет читать данные по определенному каналу, а также отбирать их по признаку источника (рис. 2). Далее обработка данных производится раздельно.

В четвертом параграфе дано краткое описание разработанных под руководством автора компьютеризованных сейсмоакустических комплексов для одноканального и многоканального профилирования.

Исходя из своего многолетнего опыта сейсмоакустических исследований на акваториях и используя современную техническую базу, нам удалось сделать их компактными, надежными и доступными по стоимости, а самое главное, с широкими функциональными возможностями. Аппаратно комплексы могут быть изготовлены в разных вариантах:

Комплекс для региональных сейсмоакустических исследований с глубинностью до 500 - 1000 м имеет в составе, кроме усилительно-регистрирующей части, мощный электроискровой источник 7,5 кДж и косу длиной 60 м. 5-ти электродный электроискровой излучатель возбуждает колебания с относительно низкочастотным спектром (центральная частота около 80 Гц). Период возбуждения импульсов - 3 - 10 с.

Усилитель имеет дифференциальный вход, программную (линейную) регулировку усиления и установку максимального коэффициента усиления от компьютера в пределах 5 - 5000 раз, ФНЧ (500, 1000, 2000, 4000, 10000 Гц), ФВЧ (30, 60, 120, 240, 500, 1000 Гц). Время ПРУ - 1 с. Максимальная амплитуда выходного сигнала - 4 В.

Комплекс для высокоразрешающих исследований со спаркером - наиболее востребованный аппаратурный комплекс для сейсмоакустического профилирования на мелководных акваториях в инженерно-геологических целях. С этим комплексом может достигаться глубинность исследований до первых сотен метров при разрешающей способности около 2 - 5 м.

В составе комплекса - высоковольтный силовой блок 600 Дж, многоэлектродный электроискровой излучатель (30 - 100 электродов) и пьезосейсмографная коса длиной 10 м. Полоса регистрируемых частот 100 - 1500 Гц. Период возбуждения импульсов - 1 с.

Комплекс для высокоразрешающих исследований с бумером предназначен для инженерных исследований на мелководных акваториях, когда требуется разрешающая способность исследований 0,3 - 0,5 м. Глубинность при этом не превышает первых десятков метров.

В состав комплекса входят маломощный высоковольтный накопитель электрической энергии 300 Дж, излучатель типа бумер и небольшая косичка длиной 1 м. Полоса регистрируемых частот 100 - 8000 Гц.

Сейсмоакустический комплекс для двухчастотного профилирования включает в себя оба вида источников - спаркер и бумер - и двухканальную приемно-регистрирующую систему [Гайнанов и др., 2008]. Комплекс позволяет при однократном прохождении профиля получать высокое разрешение для верхней части разреза и достаточно большую глубинность исследований. В отличие от систем, использующих для этого два независимых комплекта аппаратуры, разработанный аппаратно-программный комплекс обеспечивает синхронизацию источников, исключающую их взаимное влияние, позволяет подбирать параметры и регистрировать данные на одном компьютере.

Комплекс для многоканального сейсмоакустического профилирования включает в себя многоканальную косу (16, 24 или 32 канала), многоканальный усилитель, 32 канальный АЦП и источник типа спаркер или бумер.

С учетом специфики сейсмоакустического профилирования (работа с маломерных судов, осуществление спуско-подъемных операций вручную) многоканальная коса изготавливается в максимально облегченном варианте - диаметр полиуретанового шланга всего 25 мм. Чтобы вся начинка могла размещаться в таком тонком шланге, применяются специальные малогабаритные пьезоприемники и блоки предварительных усилителей.

Программа сбора данных позволяет принимать и регистрировать сигналы с 32 входных каналов. Для контроля параметров сигналов в программе предусмотрены дополнительные окна - <Одноканальный осциллограф> и <Многоканальный осциллограф>. На основном окне изображается временной разрез по одному из выбранных каналов.

Для обработки многоканальных данных по способу ОГТ используется система "RadExPro" компании ДЕКО геофизика [RadExPro Plus 3.6, 2005].

Скважинный сейсмоакустический комплекс предназначен для проведения высокочастотных сейсмических исследований (ВСП и межскважинное просвечивание) в скважинах глубиной до 200 м, имеет в своем составе высоковольтный силовой блок 600 Дж со скважинным излучателем акустических колебаний и двухканальную приемно-регистрирующую систему со скважинной пьезоэлектрической косой.

Усилители имеют 3 ступени усиления, выбираемые в автоматическом режиме, как это описано выше. Полоса пропускания усилителей 20 - 5000 Гц.

Выводы.

1. На основании теоретических и экспериментальных исследований установлены количественные закономерности для частотного и динамического диапазонов регистрируемых при сейсмоакустическом профилировании сигналов, разработаны функциональные и принципиальные схемы цифровых регистрирующих систем.

2. Разработано программное обеспечение для одноканальных, многоканальных, а также двухчастотных систем сейсмоакустического профилирования на акваториях.

3. Разработаны и изготовлены компьютеризованные сейсмоакустические комплексы для различных видов сейсмоакустического профилирования на акваториях и скважинных сейсмоакустических работ.


<< пред. след. >>

Полные данные о работе И.С. Фомин/Геологический факультет МГУ

Проект осуществляется при поддержке:
Геологического факультета МГУ,
РФФИ
   

TopList Rambler's Top100