Все о геологии :: на главную страницу! Геовикипедия 
wiki.web.ru 
Поиск  
  Rambler's Top100 Service
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
   Геология >> Общая и региональная геология | Популярные статьи
 Обсудить в форуме  Добавить новое сообщение

ГАЗОВОЕ ДЫХАНИЕ ЗЕМЛИ

В. И. Уткин. Уральский профессионально-педагогический университет
Опубликовано в Соросовском Образовательном Журнале, N1, 1997, cтр.57-64

Оглавление

 


Радон - индикатор напряженного состояния горного массива   

График непрерывных измерений концентрации радона в шахте на глубине 350 м
Рис. 5. График непрерывных измерений концентрации радона в шахте на глубине 350 м: 1 - воздух шахты, 2, 3 - наблюдательная скважина, пробуренная в массиве известняка, стрелкой показан момент горного удара, указана его энергия

    Новые данные по исследованию другого аспекта радоновой проблемы - радон как индикатор напряженного состояния горного массива привели к обнаружению нового эффекта в распределении концентрации радона при изменении напряженно-деформированного состояния горного массива [10-12]. Исследования в этом направлении проводили на Североуральском бокситовом руднике в связи с проблемой горных ударов, которые можно охарактеризовать как локальные землетрясения техногенного происхождения. В шахтах на глубинах от 300 до 600 м производили измерения концентрации радона в коротких скважинах, пробуренных в стенках шахты, а также в воздухе шахты. Результаты измерений показали следующее (рис. 5). Концентрация радона в воздухе шахты практически не изменяется и не несет информации об изменении напряженного состояния среды (рис. 5, 1 ). Кривая изменения концентрации радона в наблюдательной скважине работающей шахты (рис. 5, 2 ) имеет характерные большие мгновенные флуктуации при постоянном ее среднем значении. Такой вид кривой определяется не столько геологическими, сколько техногенными факторами - микросейсмическими воздействиями за счет движения шахтового транспорта, взрывов для добычи руды, бурения и т.д. Эти воздействия вызывают дополнительное образование микротрещин в горном массиве и соответственно приток радона в наблюдательную скважину.

График изменения концентрации радона в наблюдательной скважине, расположенной в ближней по отношению к будущему эпицентру горного удара зоне
Рис. 6. График изменения концентрации радона в наблюдательной скважине, расположенной в ближней по отношению к будущему эпицентру горного удара зоне. Треугольником показан момент взрывной отпалки руды, стрелкой - момент горного удара, указана его энергия, пунктирной линией - возможный ход процесса при отсутствии промышленного взрыва.

В скважине, пробуренной в районе рабочего забоя (рис. 5, 2 ), где наиболее часты горные удары, за 1-20 ч до момента горного удара наблюдалось уменьшение мгновенных флуктуаций, затем резкое уменьшение концентрации радона, а после горного удара - рост измеряемой концентрации радона и восстановление ее до исходного состояния.

График изменения концентрации радона в наблюдательной скважине, расположенной в дальней зоне
Рис. 7. График изменения концентрации радона в наблюдательной скважине, расположенной в дальней зоне. Отмечены моменты горных ударов с указанием энергии и расстояния от эпицентра каждого удара до измерительной установки.

Интересное явление наблюдается при наложении процессов подготовки горного удара и взрывной отработки рудного массива (рис. 6). На графике видно, что взрыв в забое вызывает эффект, аналогичный горному удару, - увеличение концентрации радона в наблюдательной скважине после взрыва. Однако, как показывают результаты измерений, взрыв не мог снять полностью напряженное состояние горного массива. Через 30 мин после взрыва концентрация радона стала вновь уменьшаться, и через 30 мин произошел довольно мощный (2600 Дж) горный удар. Вероятно, без взрыва процесс пошел бы по другому пути.   

    Таким образом, вблизи будущего эпицентра горного удара наблюдается заметное снижение концентрации радона, которое предшествует горному удару за 1-20 ч. Указанный процесс характерен для расстояний до 100 м от очага будущего горного удара. Эту зону условно будем называть ближней.
    В дальней зоне, на расстояниях от 500 до 2000 м от очага горного удара, изменение концентрации радона существенно другое (рис. 7). Горному удару предшествует не уменьшение, а резкое увеличение (в 8-10 раз) концентрации радона в наблюдательной скважине, и горный удар следует после прохождения максимума концентрации радона. На рис. 7 показан типичный пример изменения концентрации как для одиночного горного удара, так и для серии ударов. В последнем случае наблюдается суперпозиция кривых, типичных для одиночного удара, причем максимальные значения концентрации для каждого последующего удара снижаются.
    Таким образом, обнаружено новое явление - зональность изменения концентрации радона перед горным ударом относительно координат будущего горного удара. Этот результат был отмечен как одно из крупных научных достижений по Российской Академии наук за 1994 год.

Назад| Следующая страница


 См. также
ДиссертацииНовейшая сдвиговая тектоника осадочных бассейнов: тектонофизический и флюидодинамический аспекты (в связи с нефтегазоносностью):
ДиссертацииНовейшая сдвиговая тектоника осадочных бассейнов: тектонофизический и флюидодинамический аспекты (в связи с нефтегазоносностью): Глава 1. Новейшая сдвиговая тектоника осадочных бассейнов.
ДиссертацииЭкологические аспекты дегазации Земли:
ДиссертацииЭкологические аспекты дегазации Земли:
КнигиГеофизические методы исследования земной коры. Часть 2 :

Проект осуществляется при поддержке:
Геологического факультета МГУ,
РФФИ
   

TopList Rambler's Top100