Все о геологии :: на главную страницу! Геовикипедия 
wiki.web.ru 
Поиск  
  Rambler's Top100 Service
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
   Геология >> Геофизика >> Геофизические методы поисков и разведки месторождений полезных ископаемых | Книги
 Обсудить в форуме  Добавить новое сообщение

Геофизические методы исследования земной коры.

В.К. Хмелевской (Международный университет природы, общества и человека "Дубна")
Международный университет природы, общества и человека "Дубна", 1997 г.
Содержание

6.2.2. Экосейсмология.

Чтобы изучить геодинамическую и особенно сейсмологическую устойчивость геологической среды, надо, прежде всего, определить ее геолого-геофизические свойства, а затем оценить динамику их изменений посредством сейсмоэкомониторинга. Физико-геологической основой сейсмомониторинга является высокая тензочувствительность и флюидочувствительность границ блоков литосферы, проходящих, как правило, по тектоническим нарушениям, к эндогенным и экзогенным воздействиям, нередко обусловленным космическими и техногенными физическими полями [Разработка концепции мониторинга природно-техногенных систем, 1993].

Методика сейсмомониторинга сводится к изучению деформации оснований сооружений с помощью деформографов и наклономеров, а также напряженного состояния, физико-механических и прочностных свойств среды полевыми, акваториальными и скважинными сейсмоакустическими методами. К полевым и акваториальным относятся методы преломленных (МПВ) и отраженных (МОВ) волн. При исследовании в скважинах используются методы акустического профилирования и просвечивания и микросейсмокаротаж. По скоростям продольных ($V _{p}$ ) и поперечных ( $V _{s}$ ) волн, а также их затуханиям и рассеяниям с помощью теоретических и экспериментально установленных зависимостей можно оценить пористость, динамический модуль упругости, коэффициент крепости пород и другие параметры (см. 1.4). Для точного определения этих же параметров необходимы разномасштабные (полевые, скважинные измерения на образцах) геолого-геофизические экспериментальные работы на изучаемом участке. С их помощью устанавливаются корреляционно-регрессионные уравнения для определения физико-механических и деформационно-прочностных свойств пород через данные сейсмоакустических наблюдений (см. 5.3).

Методика сплошных съемок изучаемых площадей, кроме определения физико-механических и прочностных свойств, должна обеспечить микросейсморайонирование, предназначенное для уточнения имеющихся карт регионального сейсмического районирования с точки зрения изменения ожидаемой балльности землетрясений. Определив особенности геолого-тектонического строения разных участков: наличие зон тектонических нарушений, трещиноватости, глинистых пород с плывунами, растепленных мерзлых пород или, наоборот, прочного скального основания мерзлых пород, можно уточнить балльность до $\pm$ 2 баллов 12-балльной шкалы сейсмичности. Точный количественный расчет балльности проводят на стационарных или временных сейсмических станциях, где автоматически в течение длительного времени регистрируются упругие колебания разных интенсивностей и частот. Приращение балльности какого-то участка по сравнению с данными регионального сейсмического районирования свидетельствует о его меньшей устойчивости к дальним, ближним или вызванным искусственно землетрясениям. Убывание балльности указывает на наличие устойчивых к ним массивов горных пород. Вспомогательную роль при районировании территории по устойчивости к землетрясениям, обвалам и другим динамическим процессам играют гравиразведка, магниторазведка, электромагнитные профилирование и зондирование.

Если сейсмическое и микросейсмическое районирование обеспечивает прогнозирование места и балльности ожидаемых землетрясений, то предсказание времени землетрясений - проблема более сложная. Она, являясь сердцевиной сейсмомониторинга, с той или иной степенью приближения решается комплексом режимных геофизических методов:

  • изучением изменений упругих параметров среды и шумов (сейсмическая эмиссия или шумовая сейсмотомография), позволяющим выявить наиболее активные участки среды, строить временные ряды наблюденных упругих процессов, статистическая обработка которых позволяет дать прогноз этих процессов на будущее;
  • регистрацией естественных электромагнитных полей космического и земного происхождения (электрическая эмиссия), с помощью которой намечаются подходы к предсказанию землетрясений;
  • анализом концентрации газов (радон, гелий, аргон и др.), проникающих из глубин за счет раскрытия трещин перед землетрясениями ( " газовое дыхание Земли " ), и др.

В целом к прогнозу землетрясений подходят путем комплексного анализа предвестников землетрясений с учетом полевых, лабораторных, экспериментальных и теоретических работ и накопленного мирового эмпирического опыта [Разработка концепции мониторинга природно-техногенных систем, 1993]. К предвестникам сильного землетрясения, как отмечалось выше, относятся аномальные деформации блоков земной коры, статистический анализ слабой сейсмичности (сейсмотомография), особый вид вариаций геомагнитных и электромагнитных полей, изменение дебита, температуры, химического состава подземных вод и десятки других факторов. Учет множества факторов позволяет в настоящее время давать долгосрочный (на десятки лет вперед) и среднесрочный (годы и месяцы) прогнозы. Что касается краткосрочного прогноза (дни и часы), то при существующей сети наблюдений и теории сейсмологии он не проводится.

Наряду с природными существуют возбужденные землетрясения (наведенная сейсмичность). Они возникают при перераспределении упругих напряжений в геологической среде под действием антропогенно-техногенных факторов (крупные города и промышленные объекты, шахты и карьеры, водохранилища и закачка вод в скважины, подземные воды и горные удары на шахтах и т.п.). Подобные факторы могут либо сами создавать землетрясения, либо служить спусковым " крючком " для природных землетрясений.

6.2.3. Экогравитация.

Экогравитация объединяет процессы механического перемещения горных пород под действием силы тяжести на склонах гор, берегах морей, озер, рек. Такие перемещения возникают как в результате экзогенной геодинамики, так и провоцируются эндогенными процессами (землетрясениями, вулканической деятельностью и т.п.) и техногенной деятельностью людей (строительство, подрезка склонов и т.п.). Наибольшее применение геофизические методы нашли при изучении оползневых процессов.

Оползни (медленные или внезапные перемещения горных пород по склонам под действием силы тяжести) являются проявлением нарушения устойчивости геологической среды и обусловлены определенной крутизной склонов, гор и прибрежных районов, литологией, обводненностью слагающих пород, наличием глин-плывунов. Оползни могут находиться в спокойном, стабилизированном состоянии, а сдвиги провоцируются как землетрясениями, так и искусственными вибрациями от промышленных предприятий, транспорта и т.п.

При изучении оползней перед геофизикой ставятся следующие основные задачи (см. 5.3.5):

  • Выявление структуры и геологического строения тела оползня и окружающего горного массива.
  • Изучение гидрогеологических условий как в теле оползня, так и в окружающем массиве.
  • Оценка динамики (скорости движения) оползня, изменения напряженного состояния и определение ожидаемого времени подвижек.
  • Геофизические свойства горных пород тела оползня по сравнению с окружающим массивом отличаются увеличением естественных электрических потенциалов, понижением удельного электрического сопротивления и скоростей распространения упругих волн, увеличением их затухания, появлением термических аномалий и др. Поэтому основными методами решения 1-й и 2-й из названных задач являются методы естественного поля (ЕП), электромагнитные зондирования (ВЭЗ, ЗСБ) и профилирования (ЭП, ДИП), сейсморазведка методом преломленных волн (МПВ), прослушивание электрических и сейсмических шумов (электрическая и сейсмическая эмиссия). Выбор одного-трех из этих методов диктуется природными (геоморфологическими и геолого-гидрогеологическими) условиями. В стабилизированном состоянии оползня геофизические параметры, получаемые при интерпретации режимных наблюдений, сохраняются постоянными. При подготовке активизации оползня они начинают заметно изменяться, что объясняется увлажнением, ростом трещиноватости и напряженного состояния, техногенными причинами (подрезка склонов, строительство на оползнях и т.п.). Это и позволяет прогнозировать время начала скольжения и предсказывать катастрофические сходы оползней. За скоростью движения оползней (задача 3) можно следить, например, по сдвиганию магнитных реперов. Для этого в тело оползня помещают ряд вертикальных труб или стержней и проводят периодические магнитные съемки. По направлению максимального смещения изолиний и по величине смещений за известное время можно рассчитать направление движения и скорость оползня.

    На рис. 6.1 приводится пример изучения скорости движения одного из оползней-потоков на Черноморском побережье Кавказа с помощью магнитных реперов, установленных на различных глубинах. Кроме того, здесь же был использован принцип наблюдений за " естественными " реперами, в качестве которых выбираются неоднородности литологического строения, обводненности, напряженного состояния оползневого тела. Эти неоднородности четко фиксируются аномалиями параметров, получаемых по данным метода естественного электрического поля (ЕП). При выполнении режимных наблюдений смещение центров таких аномалий указывает направление и скорость смещения оползневых масс. Можно видеть, что результаты за " естественными электрическими " реперами хорошо согласуются с данными магнитных реперов.

    Рис. 6.1. Результаты комплексных геофизических и геодезических исследований на оползне: 1 - контур стенки отрыва; 2 - граница каньона; 3 - направление смещения магнитных реперов; 4-6 - эквипотенциалы естественного поля за три последовательных периода; 7 - направление смещения аномалии ЕП; 8 - направление смещений геодезических реперов

    Назад| Вперед


     См. также
    КнигиГеофизические методы исследования земной коры
    КнигиГеофизические методы исследования земной коры: Геофизические методы исследования земной коры.
    ТезисыРоль магнитотеллурических методов в комплексе региональных геолого-геофизических исследований: Роль магнитотеллурических методов в комплексе региональных геолого-геофизических исследований

    Проект осуществляется при поддержке:
    Геологического факультета МГУ,
    РФФИ
       

    TopList Rambler's Top100