Все о геологии :: на главную страницу! Геовикипедия 
wiki.web.ru 
Поиск  
  Rambler's Top100 Service
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
   Геология >> Геофизика >> Геофизические методы поисков и разведки месторождений полезных ископаемых | Курсы лекций
 Обсудить в форуме  Добавить новое сообщение

Геофизические методы исследования земной коры.

В.К. Хмелевской (Международный университет природы, общества и человека "Дубна")
Международный университет природы, общества и человека "Дубна", 1997 г.
Содержание

6.2. Общие магнитные съемки Земли и палеомагнитные исследования


6.2.1. Общие магнитные съемки Земли.

Общие магнитные съемки Земли, как и палеомагнитные исследования, имеют важное значение и в магнитометрии для решения глобальных проблем магнетизма Земли и истории его изменения, и в магниторазведке, давая дополнительную информацию для исторической геологии, геотектоники и других дисциплин, например, археологии.

Поверхность суши и океанов покрывается общими, как правило, аэромагнитными и гидромагнитными съемками разных масштабов. По данным этих съемок строятся карты нормального и аномального магнитных полей крупных регионов и всей Земли.

Для выделения магнитных аномалий, связанных с неоднородностью строения кристаллической оболочки Земли, из измеренных значений аномалий Т вычитается нормальное геомагнитное поле, которое представляет собой сумму поля однородного намагниченного шара и поля континентальных аномалий (см. 4.1).

Основное назначение общих магнитных съемок - проведение тектонического районирования, позволяющее определить контуры крупных структурных элементов земной коры: платформ, геосинклинальных областей, отдельных блоков, глубинных разломов, тектонически активных областей. Решение перечисленных задач проводится в комплексе с гравиразведкой и уточняется сейсморазведкой.

Таким образом, общие магнитные съемки позволяют решать задачи, связанные со строением земной коры, а также служат для решения таких общетеоретических задач, как происхождение и развитие Земли и ее структурных элементов, изучение характера магнитного поля на поверхности и ряда других задач.

6.2.2. Палеомагнитные исследования.

Палеомагнитные исследования предназначены для определения магнитного поля Земли в отдаленные геологические эпохи путем изучения остаточного намагничения образцов горных пород (см. 4.2.3). Как отмечалось выше, породы, содержащие ферромагнитные минералы (магнетит, титаномагнетит, гематит, пирротин), обладают свойством, намагнитившись в магнитном поле Земли в момент своего образования, сохранять магнетизм долгое время, несмотря на изменение интенсивности и даже знака вектора напряженности геомагнитного поля в районе, где они залегают.

Изучая остаточную намагниченность образцов горной породы ( $J_{ r}$), можно оценить положение геомагнитного полюса во время ее образования, если удалось доказать, что $J_{ r}$ не изменилась вследствие последующей перемагниченности или изменения положения породы в пространстве, например, вследствие тектонических нарушений.

При обработке достоверных данных о $J_{ r}$ предполагается, что вектор $J_{ r}$ пропорционален и параллелен полному вектору напряженности древнего (в момент образования породы) магнитного поля ( $T_{ др.}$). Кроме того, полагается, что это поле совпадает с геоцентрическим осевым магнитным диполем. В результате палеомагнитных исследований получены следующие выводы.

  • Среднее положение геомагнитных полюсов для промежутков времени в сотни тысяч лет совпадает с географическим полюсом, а магнитный диполь, создающий геомагнитное поле, направлен вдоль оси вращения Земли. Иногда они расходятся, как это наблюдается в настоящее время. Этот факт подтверждается палеоклиматическими данными.
  • Магнитные полюса в течение геологической истории Земли перемещаются по ее поверхности, что можно объяснить изменением положения оси вращения Земли, что также подтверждается палеоклиматическими исследованиями. Например, северный магнитный полюс в докембрии был на Западном побережье Северной Америки, в кембрии и силуре - в районе Японских островов, в карбоне и перми - на восточном побережье Азии, начиная с неогена, полюс оставался недалеко от современного.
  • Направление остаточной намагниченности горных пород в зависимости от их возраста иногда отличается на ${180}^\circ$, что связано с периодическим изменением знака магнетизма или инверсий полюса на ${180}^\circ$. Установлено, что примерно половина исследованных пород имеет намагниченность, противоположную современному магнитному полю. Длительность эпох магнетизма одного знака, эпох полярности менялась в истории Земли за последние 70 млн. лет с периодичностью от 10 тысяч до 1 млн. лет, а в более древние времена - до нескольких десятков млн. лет. Достаточных обоснований инверсии магнитных полей нет.
  • Местоположения полюсов Земли, определенные по образцам одного возраста, но взятых с разных континентов (Европа, Америка, Австралия) отличаются тем больше, чем больше возраст пород. Это объясняют дрейфом литосферных плит. Карты палеоконтинентов в разные геологические эпохи свидетельствуют о разных направлениях их перемещений, о расхождениях и столкновениях материков.
  • Гидромагнитные съемки океанов выявили линейные, знакопеременные, полосовые геомагнитные аномалии, симметричные относительно срединно-океанических хребтов (рифтов). Это, наряду с палеомагнитными исследованиями, является прямым доказательством раздвижения (спрединта) морского дна от этих хребтов.
  • В целом палеомагнитные исследования помогают решать проблему строения и развития Земли, корреляции одновозрастных пород (магнитостратиграфии), тектонического строения отдельных районов, анизотропии осадочных пород на основе их палеомагнитной слоистости, археологии и др.

    6.3. Применение магниторазведки для картирования, поисков и разведки полезных ископаемых, изучения геологической среды

    Магниторазведка применяется для решения задач региональной структурной геологии, геологического картирования разных масштабов, поисков и разведки железорудных месторождений, поисков месторождений рудных и нерудных ископаемых, оценки геолого-петрологических особенностей и трещиноватости пород, изучения геологической среды.

    6.3.1. Решение задач региональной геологии.

    В комплексе с другими геофизическими методами магниторазведку применяют для решения задач региональной геологии и структурно-тектонического районирования, т.е. выделения таких региональных структур, как краевые межгорные прогибы, антиклинории и синклинории, зоны разломов, контактов пород разного состава, своды и впадины кристаллического фундамента. Магниторазведка особенно эффективна для картирования интрузивов и эффузивов, выделяющихся высокими значениями индуцированной ($J_{ i} \approx \kappa T$) и остаточной ($J_{ r}$) намагниченностей. В пределах континентов аномальные магнитные поля в значительной степени определяются составом кристаллического фундамента докембрийского возраста и зависят от $J_{ i}$. В районах с мощным чехлом осадочных отложений, как правило, немагнитных, "прозрачных" для магниторазведки, этим методом картируются аномально намагниченные породы фундамента. Аномальные поля океанов обязаны преимущественно $J_{ r}$, создающей полосовые магнитные аномалии разного знака, параллельные рифтовым зонам.

    Характерна тесная качественная связь магнитных и гравитационных аномалий: местоположение, простирание и общая форма этих аномалий чаще всего совпадают. Однако, в отличие от гравитационных, магнитные аномалии в большей степени зависят от магнитных свойств и состава пород, чем от глубины залегания и формы структур. По этой же причине гравитационные и магнитные аномалии одного района иногда не совпадают друг с другом.

    6.3.2. Применение магниторазведки при геологическом картировании разных масштабов.

    При мелкомасштабном геологическом картировании в настоящее время применяется аэромагниторазведка. Аэромагнитные съемки являются картировочно-поисковыми. С помощью наземных магнитных наблюдений ведутся как картировочно-поисковые, так и поисково-разведочные и разведочные съемки. Карты $T_{ a}$ и $Z_{a}$, указывают на форму и местоположение пород с повышенными магнитными свойствами, дают магнитные характеристики различных групп слабо магнитных пород. Особенно четко выявляются контакты осадочных и магматических пород (под наносами), глубинные разломы, с которыми часто связано внедрение магнитных пород, местоположения интрузий и эффузивных комплексов, железорудные месторождения. Материалы магнитных съемок используются в качестве основы для рациональной постановки геолого-съемочных и поисковых работ.

    6.3.3. Применение магниторазведки для поисков полезных ископаемых.

    Поиски и разведка железорудных месторождений - задача, лучше всего решаемая магниторазведкой. Исследования начинаются с проведения аэромагнитных съемок масштаба 1 : 100 000. Железорудные месторождения выделяются очень интенсивными (сотни и тысячи гамм) аномалиями $Z( T)$. Детализация аномалий проводится наземной съемкой. При этом ведется не только качественная, но и количественная интерпретация, т.е. оценивается глубина залегания магнитных масс, простирания, падения, размеры железосодержащих пластов, а иногда по интенсивности намагничения даже качество руды.

    Наиболее благоприятны для разведки магнетитовые руды, менее интенсивными аномалиями выделяются гематитовые месторождения.

    6.3.4. Поиски месторождений рудных и нерудных полезных ископаемых.

    Магниторазведка применяется при поисках таких полезных ископаемых, как полиметаллические, сульфидные, медно-никелевые, марганцевые руды, бокситы, россыпные месторождения золота, платины, вольфрама, молибдена и др. Это оказывается возможным благодаря тому, что в рудах в качестве примесей часто содержатся ферромагнитные минералы или же они сами обладают повышенной магнитной восприимчивостью. Кроме того, по данным магнитной съемки выявляются зоны, благоприятные рудообразованию (сбросы, контакты и т.п.). Отличные результаты получаются при разведке кимберлитовых трубок, к которым приурочены месторождения алмаза.

    6.3.5. Изучение геолого-петрографических особенностей и трещиноватости пород.

    Изучение геолого-петрографических особенностей и трещиноватости пород может выполняться микромагнитной съемкой с густой сетью (1 x 1, 3 x 3 и 5 x 5 м) наблюдений и высокой точностью (до 1 нТл). Этот метод применяется для геолого-петрографических исследований пород, залегающих на глубине до 10 - 20 м. В результате строятся карты $Z_{ a}$, а изодинамы проводятся через 2, 3, 5 нТл. Далее проводится статистическая обработка карт изодинам. Каждую изолинию pазбивают на отрезки длиной 5 - 10 мм. Далее определяется азимут каждого из них, затем по числу отрезков одинакового азимута ( $n$) строят розы направления изодинам (по странам света откладываются отрезки длиной, пропорциональной n, а концы отрезков соединяются). Максимумами на них выявляются зоны преобладающей трещиноватости.

    6.3.6. Изучение геологической среды.

    При изучении геологической среды для решения инженерно-геологических, гидрогеологических, мерзлотно-гляцио-логических и экологических задач магниторазведка используется прежде всего на этапах как общего, так и специализированных видов картирования. Высокая точность современных полевых магнитометров (ошибки в определении аномалий поля около 1 нТл) обеспечивает возможность разделения по литологии пород по степени их немагнитности. Детальные, в том числе микромагнитные, съемки можно использовать для изучения участков под ответственное строительство с целью литолого-петрографического расчленения пород и выявления их трещиноватости, разрушенности, закарстованности. Эти же методики можно применять для выявления трещинно-карстовых подземных вод в скальных породах. Периодически повторяемые детальные съемки оползней, в которые заглублены металлические стержни, обеспечивают возможность определения направления и скорости их движения. Имеются положительные примеры картирования залежей подземных льдов (крупных ледяных внутригрунтовых тел и повторно-жильных льдов). С успехом используются археомагнитные исследования для решения некоторых археологических задач. Детальная магнитная съемка и каппаметрия (полевые определения магнитной восприимчивости) несут информацию о концентрации гумуса и солей в почвах, загрязненности грунтов тяжелыми металлами, отходами промышленных производств, нефтехимическими продуктами.

    Назад| Вперед


     См. также
    КнигиГеофизические методы исследования земной коры. Часть 2
    КнигиГеофизические методы исследования земной коры. Часть 2 : Геофизические методы исследования земной коры.
    ТезисыРоль магнитотеллурических методов в комплексе региональных геолого-геофизических исследований: Роль магнитотеллурических методов в комплексе региональных геолого-геофизических исследований

    Проект осуществляется при поддержке:
    Геологического факультета МГУ,
    РФФИ
       

    TopList Rambler's Top100