Все о геологии :: на главную страницу! Геовикипедия 
wiki.web.ru 
Поиск  
  Rambler's Top100 Service
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
   Геология >> Геофизика >> Геофизические методы поисков и разведки месторождений полезных ископаемых | Книги
 Обсудить в форуме  Добавить новое сообщение

Геофизические методы исследования земной коры.

В.К. Хмелевской (Международный университет природы, общества и человека "Дубна")
Международный университет природы, общества и человека "Дубна", 1997 г.
Содержание

6.4.2. Виды техногенного физического загрязнения.

Техногенное физическое загрязнение вызывается опосредованным через искусственно создаваемые физические поля воздействием человека на окружающую среду. Техногенные физические поля, о которых идет речь, представляют собой своего рода " отходы " реализуемых технологий, побочные продукты функционирования промышленных и энергетических установок, горнопроходческих комплексов, используемых при разработке месторождений полезных ископаемых, средств наземного, подземного и воздушного транспорта, коммуникационных и электропередающих линий, строительных машин и механизмов, а также агрегатов и механизмов, обеспечивающих нормальные условия в жилых и производственных помещениях, бытовой техники.

Из всех видов техногенного физического загрязнения окружающей среды наиболее существенными с позиций оценки экологических последствий и наиболее часто встречающимися являются шумовое (акустическое), вибрационное (вынужденные механические колебания), тепловое, электрическое (блуждающие токи и атмосферное электричество), электромагнитное, а также радиационное, создаваемые полями соответствующей природы (табл. 6.1).

Т а б л и ц а 6.1
Вид физического поляЕдиница измеренияУровень поля
ФоновыйДостигаемыйСанитарный пределТехнический предел
АкустическоедБ (А)25-3080-12045-60-
Вибрационноемм*с0,02-0,500,02-16,00,120,20-0,40
Температурное$^\circ$Сот -2 до +1от -160 до +150016-24* -
Электрическое:
блуждающие токи
атм. электричество

мВ/м
+ион / -ион

5-10
1,15-1,2

10-1600
1,0-1,5

-
-

3-5
-
ЭлектромагнитноекВ/м10-62,5-10,05,0-
РадиационноемР/ч**0,003-0,0250,0180,024-
*Санитарные нормы для служебных и жилых помещений.
**1 мР/ч равен 0,01 мЗв/ч.

Шумовое, или акустическое, загрязнение среды относится к категории чисто экологических факторов (прямого экологического воздействия), поскольку оказывает непосредственное и исключительное воздействие на живые организмы. Основным и повсеместным источником шума является наземный (автомобильный и железнодорожный) транспорт, хотя и другие источники, такие как воздушный транспорт, промышленные предприятия, строительные машины и механизмы, вносят свой вклад в создание шумового поля. Уровень шума, создаваемый отдельными источниками (измеряется в децибелах (дБ) - относительных единицах, показывающих превышение звукового давления над пороговым значением этого параметра, составляющим 2*10-5 Па), может значительно превышать санитарный уровень, установленный для жилых и производственных помещений, школ и лечебных учреждений, как это видно из табл. 6.1.

При социологических опросах в городах шум в качестве раздражающего фактора фигурирует обычно приблизительно в 80% ответов опрашиваемых. Шум вблизи городских магистралей устойчиво держится примерно 15-18 часов в сутки, затухая лишь на короткое время ночью с 2 до 4 часов. С санитарно-гигиенических позиций нормальным (по градостроительной классификации - комфортным) считается акустический режим при уровне звука 10-65 дБ и максимально дискомфортным - при уровне звука выше 80 дБ. Для нервной системы человека вреден шум, превышающий 50-60 дБ (уровень звука обычного аудиоплейера достигает 60-70 дБ). При уровне звука 80-90 дБ (железная дорога и промышленные предприятия) возможны необратимые изменения в органах слуха, а при уровне 120-140 дБ (железная дорога, реактивные авиалайнеры) - повреждения этих органов.

Вибрация, или динамическое воздействие на среду, проявляется в виде поля вынужденных механических колебаний, которые воспринимаются и передаются ею от источников к различным объектам, в том числе и к объектам живой природы. Поле вибрации создается многочисленными и разнообразными источниками, наиболее значимыми из которых являются движущиеся транспортные средства, оборудование промышленных предприятий, строительные машины и механизмы, техническое оборудование зданий и инженерных сооружений. Поле вибрации можно квалифицировать как экологический фактор двойного действия - прямого, если речь идет о непосредственном контакте с виброгенерирующими объектами, например, при пользовании железнодорожным транспортом или при работе с ручными перфораторами, и опосредованного, если непосредственный контакт с создающим вибрацию объектом отсутствует, а вибрация воспринимается через передающую среду, например, при нахождении в зданиях, расположенных недалеко от железнодорожного пути или линий метрополитена неглубокого заложения, а также на стройплощадках. Основная часть колебательной энергии от виброгенерирующих объектов-источников переносится поверхностными волнами, распространяющимися в пределах верхней части грунтовой толщи (10-15 м). В силу этого в сфере воздействия поля вибрации оказываются фундаменты зданий и инженерных сооружений, многие коммуникации.

Вибрационное загрязнение, т.е. воздействие поля вибрации непосредственно на грунтовые массивы, может приводить к изменению рельефа поверхности, снижению механической прочности пород или, наоборот, к их уплотнению и улучшению прочностных характеристик. Длительное вибрационное воздействие способно вызывать или активизировать экзогенные геологические процессы, такие, например, как оползни и обвалы на крутых склонах, карст, проседание поверхности, образование полостей в насыпях на железнодорожных магистралях и т.п. При воздействии через грунтовые массивы на фундаменты зданий вибрация может причинять им серьезный урон. Так, при виброколебаниях со скоростью перемещения частиц грунта 0,4*10-3 - 1,2*10-3 м/с могут происходить сверхнормативные осадки фундаментов, возникать повреждения в старых зданиях, а при скорости 5*10-3 - 8*10-3 м/с возможны серьезные повреждения зданий с деревянными и бетонными перекрытиями.

Оценка вибрационного воздействия с экологических позиций показывает, что виброколебания с частотой до 20 Гц и амплитудой до 0,25*10-3 м (виброскорость до 0,01 м/c) хотя и ощутимы, но не вызывают неприятных последствий, которые имеют место при более высоких частотах и больших амплитудах. Так, при частотах 20-40 Гц и амплитудах 0,3*10-3 - 0,5*10-3 м (виброскорость до 0,04 м/c) вибрация оказывает раздражающее действие, вызывая неприятное и даже болезненное состояние организма. В табл. 6.1 показано соотношение указанных величин с параметрами поля вибрации, создаваемого различными источниками.

Тепловое загрязнение среды, вызываемое техногенным изменением температурного режима верхних слоев литосферы, в настоящее время представляет собой серьезную геоэкологическую проблему. Согласно прогнозам, уровень ежегодного прироста тепловой энергии в больших городах к 2000 году может достичь величины 1010 Дж/м2 .

Источниками теплового загрязнения могут служить горячие цеха и подземные газоходы металлургических предприятий, теплотрассы, сборные коллекторы, коммуникационные туннели и туннели метрополитена, обогреваемые подземные сооружения, а также сбросы горячих технологических вод в реки и открытые водоемы. С другой стороны, в качестве охладителей грунтовой толщи могут рассматриваться установки, используемые для промораживания слабых и плывунных грунтов при строительстве, подземные хранилища сжиженного газа. Оказываемое этими источниками тепловое воздействие может быть охарактеризовано данными, приводимыми в табл. 6.1.

Концентрация большого числа источников тепловой энергии в верхних частях литосферного пространства (например, под большими городами-мегаполисами) создает предпосылки формирования так называемых тепловых куполов - прогретых объемов геологического пространства, частично или полностью охватывающих своими контурами территории мегаполисов во многих районах земного шара. В пределах территорий крупных городов на небольших глубинах (10-30 м) формируются обширные геотермические аномалии с превышением температуры над фоновой на 6-10$^\circ$С.

В регионах с сезонно промерзающими грунтами прогрев скальных и дисперсных песчано-глинистых пород до температуры от 16-20 до 150-160$^\circ$С обычно не оказывает существенного влияния на их прочностные свойства, вызывая лишь повышение фильтрующей способности и уменьшение пластичности и влагоемкости. Вместе с тем даже при умеренном нагревании пород увеличивается их агрессивность по отношению к бетону, железобетону и металлу элементов конструкций, возрастает опасность химической и биохимической грунтовой коррозии.

В регионах, где распространены многолетнемерзлые породы, температура которых варьирует от -0,6 до -4,2$^\circ$С, даже небольшие флуктуации температуры (всего на 2-3$^\circ$С) в верхних частях грунтовой толщи могут приводить к заметным изменениям прочностных и деформационных свойств грунтов, ухудшению их несущей способности.

Искусственное промораживание грунтов при строительстве в сложных гидрогеологических условиях приводит к формированию временных криолитозон (массивов мерзлых пород) шириной до нескольких метров или десятков метров. По мере оттаивания после остановки процесса искусственного охлаждения грунтовый массив постепенно восстанавливает свои качественные характеристики. Однако в период удержания грунта в промороженном состоянии возможны нарушения сложившегося до начала заморозки режима водонасыщения, массо- и теплообмена. Не исключены также негативные реакции на холод со стороны растительного мира и мира микробных сообществ.

Тепловое воздействие и воздействие холодом на грунтовую толщу способствует проявлению таких экзогенных геологических процессов, как термопросадки, термокарст, солифлюкция и деградация многолетней мерзлоты (при тепловом воздействии), а также образование наледей, морозное пучение (при воздействии холодом). В данном случае тепловое воздействие может квалифицироваться как экзогенный (и техногенный) геологический фактор.

Реальные техногенные вариации температурных полей непосредственного влияния на человеческий организм не оказывают, и в этом смысле роль теплового загрязнения как экологического фактора относительно невелика. Экологические эффекты техногенного теплового загрязнения проявляются прежде всего в особенностях взаимодействия прогретого (или промороженного) грунта с растениями и микробными сообществами, для которых грунтовая толща является средой обитания. В этом выражается прямое экологическое действие фактора теплового загрязнения. В то же время негативные проявления экзогенных геологических процессов, вызываемых техногенными изменениями температурного режима, могут ухудшать условия жизни и работы людей и даже таить в себе опасность в случаях, например, возможного коррозионного повреждения тепло- и газопроводов, канализации и т.п., и в этом выражается роль теплового загрязнения в качестве экологического фактора опосредованного воздействия.

Назад| Вперед


 См. также
КнигиГеофизические методы исследования земной коры
КнигиГеофизические методы исследования земной коры: Геофизические методы исследования земной коры.
ТезисыРоль магнитотеллурических методов в комплексе региональных геолого-геофизических исследований: Роль магнитотеллурических методов в комплексе региональных геолого-геофизических исследований

Проект осуществляется при поддержке:
Геологического факультета МГУ,
РФФИ
   
TopList Rambler's Top100