Все о геологии :: на главную страницу! Геовикипедия 
wiki.web.ru 
Поиск  
  Rambler's Top100 Service
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
   Геология >> Геохимические науки >> Петрология | Научные статьи
 Обсудить в форуме  Добавить новое сообщение

БУРАКОВСКО-АГАНОЗЁРСКИЙ РАССЛОЕННЫЙ МАССИВ ЗАОНЕЖЬЯ:
II. Строение краевой группы и оценка состава родоначальной магмы методом геохимической термометрии.

Г.С. Николаев, А.А. Арискин содержание >>

Строение краевой группы плутона

Рис.1

Породы краевой группы интрузива рассматриваются по данным восьми скважин, пробуренных на Аганозёрском блоке и девяти на Шалозёрском (Рис. 1). Методика идентификации и исследования краевых пород основывается на анализе геохимической структуры их разрезов и детально описана в предыдущей публикации [1]. В соответствии с этим подходом геохимическое поле плутона охарактеризовано набором индикаторных отношений элементов-примесей, которые контрастно распределяются в главные породообразующие минералы - Ni/(V+Ni), V/(Ga+V) и Sc/(Ga+Sc). Это позволяет каждой пробе дать фазовую интерпретацию. Преимущественно оливиновые породы сопровождаются максимумами Ni/(V+Ni) и минимумами отношений V/(Ga+V) и Sc/(Ga+Sc). Породы с преобладанием пироксенов имеют максимум показателей V/(Ga+V) и Sc/(Ga+Sc), но минимум отношения Ni/(V+Ni). В свою очередь для габброидов характерны минимумы всех индикаторных отношений. Отличить породы краевой группы от пород расслоенной серии можно по поведению дополнительных показателей. В разрезах пород краевой группы наблюдается "обратный" тренд индикаторов магматической эволюции, который выражается в уменьшении вверх по разрезу показателя валовой железистости (f') и увеличении анортитового отношения (an') (Анортовое отношение расчитывалось по формуле an' = (Al-Na)/(Al+Na))на фоне понижения отношения Co/(Ni+Co). При переходе к расслоенной серии тренды этих величин приобретают "нормальную" направленность, характерную для кристаллизационного фракционирования магматического расплава.

Краевая группа Аганозёрского блока. Оливиновые породы блока (Рис. 1) до глубины 900 м практически нацело серпентинизированы, вплоть до исчезновения реликтов первично-магматической структуры [11, 12]. Однако этот процесс не изменил геохимические закономерности, наблюдавшиеся в неизменённых породах [1]. Это позволяет применять упомянутую геохимическую методику и к серпентинизированным породам.

Геохимическая структура краевой группы блока отчетливо представлена в керне скважины 177 (Рис. 2А), которая, несмотря на практически полную серпентинизацию оливина, может рассматриваться как эталонная для всего блока. Переход от вмещающих мезократовых амфиболитов к породам интрузива сопровождается здесь резкой сменой характера графиков, отражающих вариации выбранных геохимических параметров. По мере удаления от контакта в разрезе краевой группы наблюдается последовательная смена габброидов, пироксенитов и пойкилитовых перидотитов, сложенных преимущественно оливином. Характерно, что значение показателя Ni/(V+Ni), отражающего соотношение Ol и Px, в оливинсодержащих породах, монотонно возрастает. Это коррелирует с понижением нормативного содержания пироксеновых компонентов, которое вероятно обусловлено уменьшением пористости кумулуса (количества интерстициальной жидкости) в направлении от контакта интрузива.

Рис.2

Уменьшение отношения Co/(Ni+Co) вверх по разрезу также подтверждает предположение об увеличении доли кумулятивного интрателлурического Ol относительно примокристов, образовавшихся in situ при кристаллизации межзернового расплава. Поскольку в керне скв. 177 наблюдается только монотонное понижение значений Co/(Ni+Co) без признаков изменения тренда этого показателя, то имеющуюся последовательность пород следует рассматривать как неполный разрез краевой зоны, видимой мощностью 90 м.

Особый петрологический интерес представляет скв. 20, глубиной более 1680 м. Это единственная горная выработка, вскрывающая практически неизменённые оливиновые кумулаты из нижних горизонтов расслоенной серии и пород краевой группы. Они представлены пойкилитовыми перидотитами и пойкилитовыми верлитами, которые в направлении от контакта переходят в дуниты (см. интервал глубин 1542-1636 м на Рис. 2Б). Эта направленность осложняется присутствием подстилающего и перекрывающего горизонтов габбро-диабазов, геохимические характеристики которых резко отличны от соответствующих показателей остальных пород Аганозёрского блока (Рис. 2Б). Это не позволяет рассматривать габбро-диабазы из скв. 20 как породы сингенетичные ранним стадиям затвердевания интрузива. Можно предполагать, что к контакту массива здесь приурочена более поздняя интрузия габброидов, нарушающая полный разрез пород краевой группы и не дающая возможности в керне скважины проследить их непосредственный переход во вмещающие породы. Тем не менее, несмотря на фрагментарную сохранность последовательности приконтактовых пород интрузива, закономерное изменение индикаторных геохимических показателей (аналогично тому, которое наблюдается в скв. 177) даёт основания уверенно отнести около 100 м керна из скв. 20 к краевой группе пород массива.

Рис.3

Составы породообразующих минералов краевой группы блока исследованы фрагментарно и несистематично [5, 13, 14]. В разрезе скв. 20 по мере удаления от контакта магнезиальность Ol возрастает примерно от Fo85 до Fo87 (Рис. 3). Наиболее железистый оливин краевых пород (Fo84) установлен в обр. 196/20 (здесь и далее числительномера образца соответсвует номеру скважины, а знаменатель - интервалу керна). Аналогичная закономерность наблюдается в скв. 196 для клинопироксена: показатель магнезиальности возрастает от #mg67 в приподошвенных габбро-норитах (обр. 196/119, 196/83.5) до #mg85 в перекрывающих пойкилитовых перидотитах (обр. 196/20). Состав плагиоклаза (An40) измерен в единственном образце 196/83.5. Широкие вариации состава Cpx и кислый состав Pl могут указывать, что часть этих анализов представляют интеркумулятивный материал, кристаллизовавшийся in situ из межзерновой жидкости.

Краевая группа Шалозёрского блока разбурена на северной, южной и восточной окраинах блока (Рис. 1). В кернах скважин можно выделить два типа разреза. Первый тип, вскрыт на восточной окраине блока (скв. 28, 28а, 84, 85) и аналогичен разрезу краевой зоны Аганозёрской части массива. Второй тип представлен в кернах скважин, пробуренных на севере и юге блока (скв. 67, 93, 94, 184, 187).

Рис.4

Геохимическая структура разреза краевой группы II типа характеризуется сложным, но выдержанным от скважины к скважине строением, которое нагляднее всего проявлено в керне скв. 187 (Рис. 4). Расслоенная серия, слагающая верхние 125 м керна и перекрывающая породы краевой группы, имеет здесь легко узнаваемую геохимическую структуру. Она отражает последовательную смену оливиновых, двупироксеновых и двупироксен-плагиоклазовых кумулатов [1].

Разрез краевой группы имеет видимую мощность около 60 м и по мере удаления от нижнего контакта плутона характеризуется последовательным переходом от обогащенных оливином пород (пойкилитовых перидотитов) к пироксенитам и габброидам. Однако в верхней части этого разреза габброиды вновь сменяются пачкой пироксенитов, что дает картину распределения пород, напоминающую зеркальное отображение расслоенной серии. Характерно, что этой симметрии подчиняются тренды отношения Co/(Ni+Co) и показателя валовой железистости f'. В разрезе краевой группы в направлении от контакта плутона наблюдается уменьшение величины этих показателей, тогда как вверх по разрезу расслоенной серии - их увеличение. С этим хорошо согласуется изменение анортитового отношения an': в разрезе краевой зоны этот показатель растет, в расслоенной серии понижается.

Рис.5

Скважина 67 - вторая глубокая скважина, пробуренная на теле массива; её глубина составляет около 1250 м (Рис. 5). Это самая загадочная скважина плутона, поскольку последовательность вскрытых ею пород до сих пор не имеет общепринятой интерпретации. Ранее она трактовалась как сдвоенный разрез, позднее - как разрез с увеличенными мощностями [15]. Под влиянием идеи, что Бураковско-Аганозёрский массив представляет комплекс двух интрузивных тел [16, 17], для объяснения строения скв. 67 предлагались гипотезы дополнительных интрузивных фаз. Так М.И. Богиной с соавторами [18] было выдвинуто предположение, что нижние 350 м керна представляют разрез некой первой фазы интрузии, породы которой существуют вблизи гипотетического подводящего канала Шалозёрско-Бураковского тела. В дальнейшем последовательность пород, вскрытая скважиной, интерпретировалась как разрез расслоенной серии, осложнённый более поздней интрузивной фазой [14]. Предполагалось, что к дополнительному внедрению принадлежат перидотитовые породы, вскрытые скважиной на интервале 650-850 м.

Действительно, разрез скважины можно разделить на два ритма - нижний и верхний. Верхний ритм вскрывается первыми 850 метрами керна, причем его геохимическая структура ритма в деталях повторяет структуру характерную для пород Шалозёрского блока [1]. Снизу вверх наблюдается последовательная смена оливиновых, двупироксеновых и двупироксен-плагиоклазовых кумулатов, а зона двупироксеновых кумулатов осложнена перидотитовым прослоем (интрвал керна 567 589 м.). В разрезе нижнего ритма (850 1180 м) также наблюдается последовательная смена преимущественно оливиновых, двупироксеновых и двупироксен-плагиоклазовых пород, но в отличии от разреза верхнего ритма он характеризуется совершенно другим мотивом геохимической структуры. Для этой толщи характеры повышенные содержания когерентных элементов (Ni, Cr, V) и "относительно некогерентного" титана при пониженных концентрациях Sc. Это находит отражение в увеличении показателей Ni/(V+Ni) и V/(Ga+V) на фоне снижения Sc/(Ga+Sc). Указанные геохимические различия верхнего и нижнего ритмов позволяют высказать сомнения в реалистичности предположений о механическом сдвоении одного и того же разреза в керне этой скважины, которое могло произойти за счет тектонических сдвигов.

Показательно поведение трендов изменения параметров f', an' и Co/(Ni+Co) в разрезах обоих ритмов. Если не рассматривать породы дополнительного внедрения (перидотитовый прослой), осложняющего зону двупироксеновых кумулатов, то для верхнего ритма характерны монотонные тренды "нормальной" магматической эволюции. Напротив, разрез нижнего ритма отличается сложной картиной поведения индикаторных отношений: например, график изменения показателя валовой железистости f' отчётливо делится здесь на три части (Рис. 5). Преимущественно оливиновые породы характеризуются обратным трендом изменения f'=0.21 0.13. Для обогащенных пироксеном пород вверх по разрезу отмечаются положительные приращения этого показателя (f'=0.22 0.45), а в габброидной части ритма они вновь становятся отрицательными (f'=0.45 0.17). Вариации an' и отношения Co/(Ni+Co) характеризуются графиками, которые можно разделить на две части: нижняя обогащённая оливином часть ритма снизу вверх имеет "нормальный" наклон, а верхняя (пироксениты и габброиды) - "обратный". Очевидно, что подобное распределение элементов, составляющих рассмотренные отношения, не могут быть объяснены в рамках обычной фракционной кристаллизации магматического расплава. Это позволяет отклонить гипотезы, как ранней [18], так и более поздней [14], интрузивных фаз плутона.

Последовательность элементов геохимической структуры нижнего ритма (Рис. 5) хорошо коррелирует с аналогичной последовательностью для скв. 187 (рис. 4), что позволяет интерпретировать породы нижнего ритма как разрез краевой группы интрузива. Отличительной особенностью рассмотренных разрезов является разная относительная мощность двупироксен-плагиоклазовых пачек, связанная, возможно, с разной высотой разрезов, относительно дна магматической камеры. Столь значительная мощность ритма (340 м), вступающая в противоречие с такой интерпретацией, может быть легко объяснена маленьким углом наклона ствола скважины относительно расслоенности. Это предположение хорошо согласуется с общим наклоном блока в северо-западных румбах, и как следствие, увеличение угла падения расслоенности в южной части Шалозёрского блока. В этом случае наблюдаемая мощность ритма будет являться кажущейся, а скв. 67 представляет уникальный случай столь детального опробования относительно маломощной пачки пород.

Составы породообразующих минералов краевой группы Шалозёрского блока получены М.М. Лавровым и А.В. Чистяковым в кернах скважин 28А [13] и 67 [5, 15, 14].

В разрезе первого типа, вскрытом скважиной 28А, сохраняется закономерность, установленная для краевой группы Аганозёрского блока: магнезиальность темноцветных минералов возрастает по мере удаления от контакта. Так для низкокальциевого пироксена наблюдается увеличение mg# от 66 в габброидах (обр.28А/199.7) до mg#=83 в пойкилитовых перидотиах (обр.28А/175). Вариации состава Pl демонстрируют обратную тенденцию: в габброидах - An48, в пироксенитах (обр.28А/195) и перидотитах - An35 и An38, соответственно. Состав Ol (Fo81) установлен в обр.28А/175.

Вариации составов минералов для разреза второго типа охарактеризованы в керне из скв. 67. Здесь обращают внимание различия показателя магнезиальности в пределах одного шлифа, которые для высоко-Са пироксена могут достигать 4-6 номеров (обр.67/1039, 67/900), а для низко-Са пироксена - 24 (обр.67/991) [14]. При ограниченном объёме имеющихся аналитических данных попытка установить характер скрытой расслоенности разреза имеет мало шансов на успех. Однако, для целей нашего исследования важны самые "высокотемпературные" составы. Отметим, что наиболее магнезиальный Ol соответствует составу Fo87 (обр.67/1161, 67/1110.2), а наиболее тугоплавкие низко- и высококальциевые пироксены (обр.67/1110.2) имеют магнезиальность #mg87 и #mg88, соответственно.

Таким образом, в пределах массива установлено два типа разреза, принадлежащих к краевой группе плутона. Первый тип выявлен в пределах Аганозёрского блока и в наиболее эродированной части Шалозёрского. Второй тип разреза вскрыт в тех частях Шалозёрского блока, где степень эрозии значительно меньше. Поэтому, породы разреза первого типа следует интерпретировать как разрезы придонных частей краевой группы, тогда как разрезы второго типа, по-видимому, надо трактовать как породы её боковой фации.

<< предыдущая | содержание | следующая >>

Проект осуществляется при поддержке:
Геологического факультета МГУ,
РФФИ
   

TopList Rambler's Top100