Все о геологии :: на главную страницу! Геовикипедия 
wiki.web.ru 
Поиск  
  Rambler's Top100 Service
 Главная страница  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
   Геология >> Геохимические науки >> Минералогия | Курсы лекций
 Обсудить в форуме  Добавить новое сообщение

Минералогия с основами кристаллографии и петрографии

Авторы: Успенская М.Е.Посухова Т.В.
(Геологический факультет МГУ)
  • Основы кристаллографии и минералогии
  • Минералы
  • Процессы минералообразования

  • 2.2. Экзогенные процессы минералообразования

    Главнейшими экзогенными процессами минералообразования являются процессы выветривания горных пород и руд и процессы осадконакопления. Областью минералообразования является поверхность Земли, а также гидросфера и атмосфера. Температура минералообразования - это климатическая температура в интервале от -50оС до +50оС. Процессы эти связаны с энергией Солнца и происходят при нормальном атмосферном давлении.

    2.2.1. Процессы выветривания

    Главными факторами этих процессов являются газы атмосферы и вода, а также избыток кислорода и углекислый газ. Идет растворение, переотложение вещества горных пород, выходящих на земную поверхность. Совершенно иные термодинамические условия приводят к тому, что глубинные минералы, попадая на поверхность, будут здесь неустойчивы. Устойчивость главных породообразующих минералов к выветриванию различна. Среди минералов реакционного ряда Боуэна наиболее устойчив в поверхностных условиях кварц, наимеее - оливин. Основные плагиоклазы гораздо легче подвергаются выветриванию по сравнению с кислыми плагиоклазами. Соответственно этому ультраосновные и основные породы в большей степени подвержены выветриванию, чем граниты. На поверхности устойчивы многие минералы метаморфических толщ, а также кислородсодержащие минералы. Сульфиды, напротив, неустойчивы в коре выветривания, они легко разлагаются и образуют многочисленные вторичные минералы. При этом происходит вынос растворимых солей К, Na, Ca и Mg и накопление труднорастворимых продуктов: Al2O3, Fe2O3, SiO2. Растворимые продукты выносятся из зоны выветривания и могут переноситься на значительные расстояния.

    Химическая активность природных вод зависит от содержания O2-, СО2, NОз-, SО42-, гуминовых кислот, NН4+, галогенидов, поступающих из атмосферы, из выветриваюцихся пород, из разлагающихся организмов или из вулканических эманаций.

    Химическое выветривание включает:

    В процессе выветривания устойчивые и частично разрушенные минералы накапливаются в континентальных областях, образуя:

    а) элювиальные месторождения - скопления минералов на месте разрушения;
    б) аллювиальные месторождения, возникающие при переносе реками и потоками разрушенных минералов с последующей концентрацией вещества.

    Многие минералы, обладающие высоким удельным весом и устойчивые к разрушению при процессах выветривания могут механически обогащаться при переносе и образовывать россыпи - промышленное скопление минералов в песках.

    Схема зоны окисления рудных месторождений
    Рис. 16.   Схема зоны окисления рудных месторождений.

    Труднорастворимые продукты выветривания остаются на месте разрушения и образуют различные коры выветривания. Главнейшим типом из них является латеритный тип. Латеритное выветривание происходит в жарком и влажном климате при чередовании засушливых и дождливых сезонов. Кремнезем здесь почти полностью выносится, а латериты обогащаются глиноземом. Возникает полиминеральная смесь из диаспора, гиббсита и гидроксидов железа, называемая бокситами и являющаяся рудой на алюминий. Латериты имеют красный цвет ("латер" - лат. кирпич), если содержат в достаточном количестве гидроксиды железа. Латериты могут возникать при выветривании как кислых, так и основных и ультраосновных пород.

    Своеобразные коры выветривания возникают на рудных сульфидных месторождениях - зоны окисления рудных месторождений (рис. 16).

    Сульфиды легко разрушаются и переходят в многочисленные сульфаты, оксиды, карбонаты, фосфаты и другие соединения. Общая схема процесса следующая:
    FeS2 => FeSO4 => Fe2[SO4]3 => Fe(OH)3 => Fe2O3*nH2O.

    Самая верхняя выщелоченная зона носит название "железной шляпы"   благодаря тому, что бурые оксиды и гидроксиды железа концентрируются в этой зоне (на рис.16 - зона 1). Возникающие сульфаты легко растворимы, и, просачиваясь в нижнюю часть зоны окисления, участвуют в образовании новых минералов:
    2CuSO4 + 2CaCO3 + 5H2O => Cu2[CO3](OH)2 + 2Ca[SO4]*2H2O + CO(халькопирит =>малахит + гипс).

    Ниже уровня грунтовых вод находится зона цементации или зона вторичного сульфидного обогащения (на рис.16 - зона 3). Сульфаты реагируют здесь с первичными рудами, в результата чего образуются вторичные сульфиды:
    FeS2 + CuSO4 + H2O => Cu2S + CuS + FeSO4 + H2SO(пирит => халькозин + ковеллин).

    Оглавление| Назад| Следующая страница


     См. также
    Анонсы конференцийIII Всероссийская научная школа "Математические исследования в кристаллографии, минералогии и петрографии"
    НовостиЗавершилась III Всероссийская научная школа "Математические исследования в кристаллографии, минералогии и петрографии"
    Биографии ученыхЧетвериков Сергей Дмитриевич
    Аннотации книгКаталог научной литературы издательства "ГЕОС" на 2007-2010 годы
    КнигиСоболев В.С. Федоровский метод:
    Аннотации книгЮ. М. Дымков. О Книге В.И. Павлишина, Н.П. Юшкина и В.А. Попова "Онтогенический метод в минералогии" (1988)
    СообщениеФазовые отношения во фторсодержащей гранитной и нефелин-сиенитовой системах и распределение элементов между фазами: ЛИТЕРАТУРА

    Проект осуществляется при поддержке:
    Геологического факультета МГУ,
    РФФИ
       

    TopList Rambler's Top100